Browsing by Author "Martiniano, Hugo"
Now showing 1 - 10 of 51
Results Per Page
Sort Options
- Addictive behaviours during the COVID-19 pandemic: results from a nationwide study in PortugalPublication . Virgolino, Ana; Santos, Osvaldo; Fialho, Mónica; Heitor, Maria João; Costa, Alexandra; Rasga, Célia; Martiniano, Hugo; Costa, Joana; Vicente, Astrid; Caldas de Almeida, TeresaEvidence shows that individuals can engage in maladaptive behaviours as a response to a pandemic context, which can compromise their health and wellbeing. This project aims to characterize self-reported changes in addiction-related behaviours and associated factors in the adult population during the first COVID-19 lockdown, in Portugal.
- Análise de uma rede de similaridade genética entre a perturbação do espetro do autismo e comorbilidades do foro neurológico e neuropsiquiátricoPublication . Vilela, Joana; Martiniano, Hugo; Marques, Ana Rita; Santos, João Xavier; Rasga, Célia; Oliveira, Guiomar; Vicente, Astrid MouraA Perturbação do Espetro do Autismo (PEA) é uma perturbação do neurodesenvolvimento com apresentação clínica heterogénea, nível de gravidade variável e ocorrência de múltiplas comorbilidades. A PEA tem uma arquitetura genética complexa que se reflete na sua heterogeneidade clínica, existindo evidência de uma sobreposição de genes alterados entre esta condição e diversas comorbilidades do foro neurológico e neuropsiquiátrico. Neste estudo, construímos uma rede de interação entre doenças baseada na similaridade genética, para explorar a componente genética compartilhada entre a PEA e comorbilidades neurológicas e neuropsiquiátricas. As doenças analisadas incluem o Défice Intelectual (DI), a Perturbação de Hiperatividade/ Défice de Atenção (PHDA) e a Epilepsia, bem como outras doenças neuropsiquiátricas como a Esquizofrenia (SCZ) e a Perturbação Bipolar (PB). Usando a base de dados de doenças da DisGeNET, a similaridade genética entre as doenças analisadas foi calculada a partir do coeficiente de Jaccard entre pares de doenças, e o algoritmo de Leiden foi usado para identificar comunidades de doenças na rede. Identificámos uma comunidade heterogénea de doenças geneticamente mais semelhantes à PEA, que inclui a Epilepsia, a PB, a PHDA com apresentação combinada, e algumas perturbações no espetro da SCZ. Esta abordagem permitiu obter uma maior clarificação acerca da componente genética compartilhada entre a PEA e comorbilidades neurológicas e neuropsiquiátricas, com implicações importantes para a nosologia, fisiopatologia e o tratamento o personalizado da doença.
- Análise genómica no Serviço Nacional de Saúde: modelo colaborativo INSA–ULSSM para implementação da análise de variantes patogénicas no exomaPublication . Ferrão, José; Macedo, Catarina; Neto, Lara; Mendonça, Joana; Rangel, Sara; Martiniano, Hugo; Soares, Marta; Custódio, Sónia; Santos, Maria Rosário; Sousa, Ana Cristina; Sousa, Ana Berta; Vieira, Luís
- Analysis of LNCRNAs from exome data of ASD patients. Tools and PipelinesPublication . Martiniano, HugoObjectives: Develop a pipeline to identify and analyze rare genetic variants influencing LNCRNA expression from exome sequencing involved in ASD: Generalize the pipeline as much as possible to produce a generic tool for exome (or genome) sequencing data.
- Aplicação de métodos de aprendizagem automática em grafos de conhecimento para medicina personalizadaPublication . Vilela, Joana; Asif, Muhammad; Marques, Ana Rita; Santos, João Xavier; Rasga, Célia; Vicente, Astrid; Martiniano, HugoA Medicina Personalizada é um modelo de prática médica que utiliza o perfil fenotípico e genotípico do indivíduo para melhorar a precisão do diagnóstico, a eficácia terapêutica ou a prevenção de doenças. Neste sentido, a enorme quantidade de dados gerados ao longo dos últimos anos na área biomédica tem contribuído para uma melhor compreensão dos determinantes genéticos de várias patologias e, consequentemente, para a implementação de práticas de Medicina Personalizada em várias áreas, por exemplo na Oncologia e no âmbito das doenças raras. No entanto, ainda subsistem desafios significativos, nomeadamente no que diz respeito à integração de dados biomédicos oriundos de fontes heterogéneas e na obtenção de informação clinicamente relevante. Este trabalho descreve uma abordagem que usa métodos de aprendizagem automática aplicados a um Grafo de Conhecimento (GC) biomédico como um meio para integrar informação armazenada em bases de dados diversas. Este GC contém relações entre genes, doenças e outras entidades biológicas, extraídas de três bases de dados: Ensembl, DisGeNET e Gene Ontology. Neste trabalho exploramos o potencial dos métodos de aprendizagem automática em grafos para produzir informação clinicamente relevante e descrevemos a aplicação desta metodologia à previsão de associações gene-doença. Mostramos ainda que as principais associações gene-doença previstas por esta abordagem podem ser confirmadas em bases de dados externas ou já foram previamente identificadas na literatura.
- Autism Spectrum Disorder (ASD): genetic, epigenetic and environmental issuesPublication . Marques, Ana Rita; Martiniano, Hugo; Xavier-Santos, João; Asif, M.; Oliveira, Guiomar; Romão, Luísa; Vicente, Astrid M.Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication/interaction and by unusual repetitive and restricted behaviors and interests. ASD often co-occurs in the same families with other neuropsychiatric diseases (NPD), such as intellectual disability, schizophrenia, depression and attention deficit hyperactivity disorder. Genetic factors have an important role in ASD etiology. Multiple copy number variants (CNVs) and single nucleotide variants (SNVs) in candidate genes have been associated with an increased risk to develop ASD [8-10]. Nevertheless, recent heritability estimates and the high genotypic and phenotypic heterogeneity characteristic of ASD indicate a role of environmental and epigenetic factors, such as long noncoding RNA (lncRNA) and microRNA (miRNA), as modulators of genetic expression and clinical presentation. The aim of this project is to understand the role of lncRNA, miRNA and other epigenetic factors in ASD. For this purpose we are, in a first approach, screening for CNVs and SNVs encompassing lncRNA and miRNA loci in two large datasets: the Autism Genome Project (AGP), with CNV data from 2611 autism trios and the ARRA Autism Sequencing Collaboration, with whole exome sequencing data (WES) from 3056 autism trios. These datasets include data from Portuguese ASD probands recruited by our team. Thus far we have explored the variant call format files that contain all WES variants called by GATK. We started by testing different annotation tools and databases to obtain the best subset of variants that will be filtered according to their genomic coordinates and their pathogenic status. We are also selecting the CNVs from the AGP file that contain lncRNA and miRNA loci. The goal is to identify individuals with potential mutations in lncRNA and miRNA loci that may be disrupting their function upon target genes. Experimental validation will be carried out by measuring gene expression in these patients. A second approach will involve exploring available multiplex families in which ASD co-occurs with other NPDs. Segregation analysis will allow us to define patterns of NPD transmission, identify common gene variants and explore the role of modulating epigenetic factors that lead to differential disease expression.
- Autism Spectrum Disorder (ASD): genetic, epigenetic and environmental issuesPublication . Marques, Ana Rita; Martiniano, Hugo; Xavier-Santos, João; Asif, M.; Oliveira, Guiomar; Luísa, Romão; M. Vicente, AstridAutism Spectrum Disorder (ASD) is a neurodevelopmental disorder which affects the brain structure and the proper establishment of the neuronal connectivity.
- Autism Spectrum Disorder: contribution of genetic variants involved in the nonsense-mediated mRNA decayPublication . Marques, Ana Rita; Santos, João Xavier; Vilela, Joana; Rasga, Célia; Martiniano, Hugo; Oliveira, Guiomar; Romão, Luísa; Moura Vicente, AstridIntroduction: Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by impairedsocial/communication skills and stereotyped/repetitive behaviors. Genetic factors account for 50-80% of the familialrisk of ASD, but genetic determinants are not fully understood and a role for regulatory processes is plausible. Inthis study, we explored the contribution to ASD etiology of genes involved in an important post-transcriptionalregulatory mechanism implicated in neurodevelopment, the Nonsense-Mediated Decay (NMD). Methods: We first compiled a group of 46 genes encoding NMD factors and regulators. In these genes wesearched for Single Nucleotide Variants (SNVs) and Copy Number Variants (CNVs) in two samples of ASD patients(N=1828 and N=3570, respectively). We observed the frequency of these variants in 60146 controls from gnomADv2.1.1 (for SNVs) and in 10355 controls from the Database of Genomic Variant ( for CNVs). In genes with rarevariants (MAF<1% in controls) predicted to be pathogenic in silico , we further investigated whether these variantsaffect protein domains required for NMD. Results: We identified 270 predicted pathogenic SNVs within 38 genes in 524 ASD patients (28.7% of the total ASDcases) and 38 CNVs located in 18 genes in 38 ASD patients (1% of the ASD cases). Five of these genes, RBM8A , UPF2 , FMR1 , SMG6 and EIF4G1, were previously associated with ASD. We found that 136 variants (122 SNVsand 11 CNVs), in 23 genes, were located within known protein domainsrequired for NMD. These variants, identifiedin 258 ASD patients, may affect proper NMD function and consequently contribute to changes in the expression ofNMD targets. Discussion : In this study we identified genetic variants that may affect NMD function in ASD patients. Since mostNMD targets encode proteins expressed in the brain, we hypothesize that NMD impairment can constitute a riskfactor to ASD pathophysiology. Further studies are needed to better understand the impact of these genetic variantson NMD function and their relevance for ASD.A full understanding of these regulatory mechanisms may constitutean opportunity for the development of therapeutic interventions.
- Autism Spectrum Disorder: gene variants involved in the nonsense-mediated mRNA decay pathwayPublication . Marques, Ana Rita; Martiniano, Hugo; Santos, J.X.; Vilela, Joana; Asif, M.; Rasga, C.; Oliveira, G.; Romão, Luísa; Vicente, AstridGenetic factors account for 50-80% of the familial risk of Autism Spectrum Disorder (ASD), but most of the genetic determinants are still unknown and a role for other regulatory mechanisms is likely. The nonsense-mediated decay (NMD) pathway is essential to control mRNA quality and has an important role in the regulation of the transcriptome. Mutations in genes involved in the NMD pathway, such as the UPF3B gene, a core component of this pathway, were previously linked to ASD. In this study we explored the potential role of NMD factors in ASD. We generated a list of 153 genes involved in the NMD pathway using AmiGO, Reactome and a systematic literature review. To identify potentially pathogenic variants in the NMD genes, we analyzed whole exome sequencing data (WES) data from 1338 ASD subjects. We also searched for Copy Number Variants (CNVs) targeting NMD genes in ASD patients (n=3570) and checked their frequency in controls (n=9649). We identified 43 high impact variants in 28 NMD genes, including the UPF3B and ACE, two genes previously implicated in ASD. Importantly, 11 were novel candidate genes that carry loss-of-function and missense (deleterious and damaging) variants with a frequency of 1 to 5% in this ASD dataset. Additionally, 5 NMD genes were found to be targeted by CNVs in 12 ASD subjects but none of the controls. The discovery of 33 NMD genes that are intriguing candidates for ASD in large patient genomic datasets provides evidence supporting the involvement of the NMD pathway in ASD pathophysiology.
- Autism Spectrum Disorder: modulation of genomic variant effects on brain structure and functionPublication . Vilela, Joana; Martiniano, Hugo; Marques, Ana Rita; Xavier Santos, João; Asif, Muhammad; Rasga, Célia; Oliveira, Guiomar; Vicente, Astrid M.The main objective of this work is to identify Single Nucleotide Variants (SNVs) that play a role in ASD etiology in neurotransmission and synaptic genes since there is strong genomic and functional evidence that these biological processes are altered in ASD.
