| Name: | Description: | Size: | Format: | |
|---|---|---|---|---|
| 1.42 MB | Adobe PDF | |||
| 27.45 MB | Adobe PDF |
Advisor(s)
Abstract(s)
Human exposure to titanium dioxide nanomaterials(TiO2NMs) occurs particularly by ingestion, due to food/food contact materials and consumer products. However, the possibility of adverse effects in gastrointestinal tract is unclear. Aiming to study the impact of digestion on the NMs’ properties and their cellular/molecular effects, two human intestinal cell lines were used, Caco-2 and HT29-MTX-E12. After exposure to TiO2NMs(NM-102, NM-103, NM-105), undigested or subjected to standardized static in vitro digestion method (mimicking human digestion), the cells were analyzed for toxicity, genotoxicity, reactive oxygen species, NM uptake and intestinal translocation.
We showed that in vitro digestion of TiO2NMs may increase their toxicity and DNA-damaging effect, depending on the NM, more relevant for the rutile/anatase NM-105, possibly due to its smaller hydrodynamic size in the cellular medium. Effects on chromosomal integrity were seen in HT29-MTX-E12 cells, for all tested TiO2NMs, especially after digestion. Internalization into early endosomes was confirmed for NM-103 and NM-105, before and after digestion, in monolayers of both cell lines, and at the apical membrane of polarized Caco-2 cells. The internalized NMs accumulated in late endosomes/multivesicular bodies, partially transversing the basolateral membrane of polarized Caco-2 cells without changing transepithelial electrical resistance or epithelial marker abundance. These results suggest that part of the TiO2NMs can be transcytosed through colonic epithelia without disrupting intestinal barrier integrity.
Overall, the biological outcomes from TiO2NMs interaction with intestinal cells were more pronounced after digestion, highlighting its relevance in the hazard assessment of ingested NMs.
Description
Abstract publicado em: Environ Mol Mutagen. 2022 Aug;63(Suppl 1):88. (Abstracts from the 13th International Conference on Environmental Mutagens and 53rd Annual Meeting of the Environmental Mutagenesis and Genomics Society). https://onlinelibrary.wiley.com/toc/10982280/2022/63/S1
Keywords
Ingested Nanomaterials Nanotoxicology Environmental Genotoxicity Vias de sinalização e patologias associadas’ Genotoxicidade Ambiental
