Percorrer por autor "Masselot, Pierre"
A mostrar 1 - 10 de 16
Resultados por página
Opções de ordenação
- Air pollution mixture complexity and its effect on PM2.5-related mortality: A multicountry time-series study in 264 citiesPublication . Masselot, Pierre; Kan, Haidong; Kharol, Shailesh K; Bell, Michelle L.; Sera, Francesco; Lavigne, Eric; Breitner, Susanne; das Neves Pereira da Silva, Susana; Burnett, Richard T.; Gasparrini, Antonio; Brook, Jeffrey R.; MCC Collaborative Research NetworkBackground: Fine particulate matter (PM2.5) occurs within a mixture of other pollutant gases that interact and impact its composition and toxicity. To characterize the local toxicity of PM2.5, it is useful to have an index that accounts for the whole pollutant mix, including gaseous pollutants. We consider a recently proposed pollutant mixture complexity index (PMCI) to evaluate to which extent it relates to PM2.5 toxicity. Methods: The PMCI is constructed as an index spanning seven different pollutants, relative to the PM2.5 levels. We consider a standard two-stage analysis using data from 264 cities in the Northern Hemisphere. The first stage estimates the city-specific relative risks between daily PM2.5 and all-cause mortality, which are then pooled into a second-stage meta-regression model with which we estimate the effect modification from the PMCI. Results: We estimate a relative excess risk of 1.0042 (95% confidence interval: 1.0023, 1.0061) for an interquartile range increase (from 1.09 to 1.95) of the PMCI. The PMCI predicts a substantial part of within-country relative risk heterogeneity with much less between-country heterogeneity explained. The Akaike information criterion and Bayesian information criterion of the main model are lower than those of alternative meta-regression models considering the oxidative capacity of PM2.5 or its composition. Conclusions: The PMCI represents an efficient and simple predictor of local PM2.5-related mortality, providing evidence that PM2.5 toxicity depends on the surrounding gaseous pollutant mix. With the advent of remote sensing for pollutants, the PMCI can provide a useful index to track air quality.
- Associations of ambient exposure to benzene, toluene, ethylbenzene, and xylene with daily mortality: a multicountry time-series study in 757 global locationsPublication . Zhou, Lu; Xiong, Ying; Sera, Francesco; Vicedo-Cabrera, Ana Maria; Abrutzky, Rosana; Guo, Yuming; Tong, Shilu; Coelho, Micheline de Sousa Zanotti Stagliorio; Saldiva, Paulo Hilario Nascimento; Lavigne, Eric; Correa, Patricia Matus; Ortega, Nicolás Valdés; Osorio, Samuel; Roye, Dominic; Kyselý, Jan; Orru, Hans; Maasikmets, Marek; Jaakkola, Jouni J.K.; Ryti, Niilo; Pascal, Mathilde; Huber, Veronika; Breitner-Busch, Susanne; Schneider, Alexandra; Katsouyanni, Klea; Samoli, Evangelia; Entezari, Alireza; Mayvaneh, Fatemeh; Goodman, Patrick; Zeka, Ariana; Raz, Raanan; Scortichini, Matteo; Stafoggia, Massimo; Honda, Yasushi; Hashizume, Masahiro; Ng, Chris Fook Sheng; Alahmad, Barrak; Diaz, Magali Hurtado; Félix Arellano, Eunice Elizabeth; Overcenco, Ala; Klompmaker, Jochem; Rao, Shilpa; Carrasco, Gabriel; Seposo, Xerxes; Chua, Paul Lester Carlos; das Neves Pereira da Silva, Susana; Madureira, Joana; Holobaca, Iulian-Horia; Scovronick, Noah; Garland, Rebecca M.; Kim, Ho; Lee, Whanhee; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Ragettli, Martina S.; Guo, Yue Leon; Pan, Shih-Chun; Li, Shanshan; Masselot, Pierre; Colistro, Valentina; Bell, Michelle; Zanobetti, Antonella; Schwartz, Joel; Dang, Tran Ngoc; Van Dung, Do; Gasparrini, Antonio; Huang, Yaoxian; Kan, HaidongBackground: The presence of benzene, toluene, ethylbenzene, and xylene isomers (BTEX) in the environment is of increasing concern due to their toxicity and ubiquity. Although the adverse health effects of BTEX exposure have been documented, robust epidemiological evidence from large-scale, multicountry studies using advanced exposure assessment methodologies remains scarce. We aimed to assess the association of short-term ambient exposure to individual BTEX components and their mixture with daily total, cardiovascular, and respiratory mortality on a global scale. Methods: Daily data on mortality, meteorological factors, and air pollution were collected from 757 locations across 46 countries or regions. Data on individual chemicals (ie, benzene, toluene, xylenes [summation of ethylbenzene, m-xylene, p-xylene, and o-xylene]) and the aggregate mixture (ie, BTEX) were estimated using a chemistry–climate model. We examined the short-term associations of each individual chemical as well as the BTEX mixture with daily total, cardiovascular, and respiratory mortality in a multicountry framework. Using a two-stage time-series design, we first applied generalised additive models with a quasi-Poisson distribution to obtain location-specific associations, which were subsequently pooled using random-effects meta-analysis. Two-pollutant models were used to assess the independent effects of BTEX after adjusting for co-pollutants (PM2·5, PM10, nitrogen dioxide, sulphur dioxide, ozone, and carbon monoxide). Additionally, we assessed the overall exposure–response curves with spline terms. Findings: An IQR increment of BTEX concentration on lag 0–2 days (3-day moving average of the present day and the previous 2 days) was associated with increases of 0·57% (95% CI 0·49–0·65), 0·42% (0·30–0·54), and 0·68% (0·50–0·86) in total, cardiovascular, and respiratory mortality, respectively. The corresponding effect estimates for an IQR increment in individual chemicals (benzene, toluene, and xylenes) were 0·38–0·61%, 0·44–0·70%, and 0·41–0·65%, respectively. The associations remained significant after adjusting for co-pollutants, with a general decline in magnitude, except for a slight increase after adjustment for ozone. The shape of the exposure–response curves for all pollutants and causes of death was almost linear, with steeper slopes at low concentrations and no discernible thresholds. Interpretation: This global study provides novel evidence linking short-term exposure to ambient BTEX, both individually and as a mixture, with increased daily total, cardiovascular, and respiratory mortality. Our findings underscore the need for comprehensive air pollution mitigation policies, including stringent controls on BTEX emissions, to protect public health.
- Comparison of weather station and climate reanalysis data for modelling temperature-related mortalityPublication . Mistry, Malcolm N.; Schneider, Rochelle; Masselot, Pierre; Royé, Dominic; Armstrong, Ben; Kyselý, Jan; Orru, Hans; Sera, Francesco; Tong, Shilu; Lavigne, Éric; Urban, Aleš; Madureira, Joana; García-León, David; Ibarreta, Dolores; Ciscar, Juan-Carlos; Feyen, Luc; de Schrijver, Evan; de Sousa Zanotti Stagliorio Coelho, Micheline; Pascal, Mathilde; Tobias, Aurelio; Alahmad, Barrak; Abrutzky, Rosana; Saldiva, Paulo Hilario Nascimento; Correa, Patricia Matus; Orteg, Nicolás Valdés; Kan, Haidong; Osorio, Samuel; Indermitte, Ene; Jaakkola, Jouni J.K.; Ryti, Niilo; Schneider, Alexandra; Huber, Veronika; Katsouyanni, Klea; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Michelozzi, Paola; de’Donato, Francesca; Hashizume, Masahiro; Kim, Yoonhee; Diaz, Magali Hurtado; De la Cruz Valencia, César; Overcenco, Ala; Houthuijs, Danny; Ameling, Caroline; Rao, Shilpa; Seposo, Xerxes; Nunes, Baltazar; Holobaca, Iulian-Horia; Kim, Ho; Lee, Whanhee; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Guo, Yue-Liang Leon; Chen, Bing-Yu; Colistro, Valentina; Zanobetti, Antonella; Schwartz, Joel; Dang, Tran Ngoc; Van Dung, Do; Guo, Yuming; Vicedo-Cabrera, Ana M.; Gasparrini, AntonioEpidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data. Our findings show that reanalysis temperature from the last ERA5 products generally compare well to station observations, with similar non-optimal temperature-related risk estimates. However, the analysis offers some indication of lower performance in tropical regions, with a likely underestimation of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure variables in epidemiological analyses of temperature-related risk.
- Differential Mortality Risks Associated With PM2.5 Components: A Multi-Country, Multi-City StudyPublication . Masselot, Pierre; Sera, Francesco; Schneider, Rochelle; Kan, Haidong; Lavigne, Éric; Stafoggia, Massimo; Tobias, Aurelio; Chen, Hong; Burnett, Richard T.; Schwartz, Joel; Zanobetti, Antonella; Bell, Michelle L.; Chen, Bing-Yu; Guo, Yue-Liang Leon; Ragettli, Martina S.; Vicedo-Cabrera, Ana Maria; Åström, Christofer; Forsberg, Bertil; Íñiguez, Carmen; Garland, Rebecca M.; Scovronick, Noah; Madureira, Joana; Nunes, Baltazar; De la Cruz Valencia, César; Hurtado Diaz, Magali; Honda, Yasushi; Hashizume, Masahiro; Ng, Chris Fook Cheng; Samoli, Evangelia; Katsouyanni, Klea; Schneider, Alexandra; Breitner, Susanne; Ryti, Niilo R.I.; Jaakkola, Jouni J.K.; Maasikmets, Marek; Orru, Hans; Guo, Yuming; Valdés Ortega, Nicolás; Matus Correa, Patricia; Tong, Shilu; Gasparrini, AntonioBackground: The association between fine particulate matter (PM2.5) and mortality widely differs between as well as within countries. Differences in PM2.5 composition can play a role in modifying the effect estimates, but there is little evidence about which components have higher impacts on mortality. Methods: We applied a 2-stage analysis on data collected from 210 locations in 16 countries. In the first stage, we estimated location-specific relative risks (RR) for mortality associated with daily total PM2.5 through time series regression analysis. We then pooled these estimates in a meta-regression model that included city-specific logratio-transformed proportions of seven PM2.5 components as well as meta-predictors derived from city-specific socio-economic and environmental indicators. Results: We found associations between RR and several PM2.5 components. Increasing the ammonium (NH4+) proportion from 1% to 22%, while keeping a relative average proportion of other components, increased the RR from 1.0063 (95% confidence interval [95% CI] = 1.0030, 1.0097) to 1.0102 (95% CI = 1.0070, 1.0135). Conversely, an increase in nitrate (NO3-) from 1% to 71% resulted in a reduced RR, from 1.0100 (95% CI = 1.0067, 1.0133) to 1.0037 (95% CI = 0.9998, 1.0077). Differences in composition explained a substantial part of the heterogeneity in PM2.5 risk. Conclusions: These findings contribute to the identification of more hazardous emission sources. Further work is needed to understand the health impacts of PM2.5 components and sources given the overlapping sources and correlations among many components.
- The effectiveness of heat prevention plans in reducing heat-related mortality across EuropePublication . Urban, Aleš; Huber, Veronika; Henry, Salomé; Plaza, Nuria Pilar; Tušlová, Lucie; Dasgupta, Shouro; Masselot, Pierre; Cvijanovic, Ivana; Mistry, Malcolm; Pascal, Mathilde; de'Donato, Francesca; Di Napoli, Claudia; Gosling, Simon N.; Kohnová, Silvia; Kyselý, Jan; Lüthi, Samuel; Pau, Louis-François; Ragettli, Martina S.; Ruuhela, Reija; Ryti, Niilo; das Neves Pereira da Silva, Susana; Zemah-Shamir, Shiri; Thiery, Wim; Vicedo-Cabrera, Ana-Maria; Wieczorek, Joanna; Sera, Francesco; Armstrong, Ben; Gasparrini, AntonioHeat-health warning systems and action plans, referred to as heat prevention plans (HPPs), are key public health interventions aimed at reducing heat-related mortality. Despite their importance, prior assessments of their effectiveness have yielded inconsistent results. The objective of this study is to systematically assess the effectiveness of HPPs in reducing heat-related mortality risk across Europe. We analysed daily mortality and mean temperature data from 102 locations in 14 European countries between 1990 and 2019. Using data from national experts, we identified the year of HPP implementation and categorised their development class. A three-stage analysis was conducted: (1) quasi-Poisson time series models were used to estimate location-specific warm-season exposure-response functions in 3 year subperiods; (2) mixed-effect meta-regression models with multilevel longitudinal structures were employed to quantify changes in pooled exposure-response functions due to HPP implementation, adjusted for long-term trends in heat-related mortality risks; and (3) the heat-related excess mortality due to HPP was calculated by comparing factual (with HPP) and counterfactual (without HPP) scenarios. Estimates are reported by country, region, and HPP class. HPP implementation was associated with a 25.2% [95% CI: 19.8% to 31.9%] reduction in excess deaths attributable to extreme heat, corresponding to 1.8 [95% CI: 1.3-2.4] avoided deaths annually per 100 000 inhabitants. This equates to an estimated 14 551 [95% CI: 10 118-19 072] total deaths avoided across all study locations following HPP implementation. No significant differences in HPP effectiveness were observed by European region or HPP class. Our findings provide robust evidence that HPPs substantially reduce heat-related mortality across Europe, accounting for temporal changes and geographical differences in risks. These results emphasise the importance of monitoring and evaluating HPPs to enhance adaptation to a warming climate.
- Excess mortality attributed to heat and cold: a health impact assessment study in 854 cities in EuropePublication . Masselot, Pierre; Mistry, Malcolm; Vanoli, Jacopo; Schneider, Rochelle; Iungman, Tamara; Garcia-Leon, David; Ciscar, Juan-Carlos; Feyen, Luc; Orru, Hans; Urban, Aleš; Breitner, Susanne; Huber, Veronika; Schneider, Alexandra; Samoli, Evangelia; Stafoggia, Massimo; de’Donato, Francesca; Rao, Shilpa; Armstrong, Ben; Nieuwenhuijsen, Mark; Vicedo-Cabrera, Ana Maria; Gasparrini, Antonio; Achilleos, Souzana; Kyselý, Jan; Indermitte, Ene; Jaakkola, Jouni J.K.; Ryti, Niilo; Pascal, Mathilde; Katsouyanni, Klea; Analitis, Antonis; Goodman, Patrick; Zeka, Ariana; Michelozzi, Paola; Houthuijs, Danny; Ameling, Caroline; Silva, Susana; Madureira, Joana; Holobaca, Iulian-Horia; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Surname, First name; Zafeiratou, Sofia; Vazquez Fernandez, Liliana; Monteiro, Ana; Rai, Masna; Zhang, Siqi; Aunan, KristinBackground: Heat and cold are established environmental risk factors for human health. However, mapping the related health burden is a difficult task due to the complexity of the associations and the differences in vulnerability and demographic distributions. In this study, we did a comprehensive mortality impact assessment due to heat and cold in European urban areas, considering geographical differences and age-specific risks. Methods: We included urban areas across Europe between Jan 1, 2000, and Dec 12, 2019, using the Urban Audit dataset of Eurostat and adults aged 20 years and older living in these areas. Data were extracted from Eurostat, the Multi-country Multi-city Collaborative Research Network, Moderate Resolution Imaging Spectroradiometer, and Copernicus. We applied a three-stage method to estimate risks of temperature continuously across the age and space dimensions, identifying patterns of vulnerability on the basis of city-specific characteristics and demographic structures. These risks were used to derive minimum mortality temperatures and related percentiles and raw and standardised excess mortality rates for heat and cold aggregated at various geographical levels. Findings: Across the 854 urban areas in Europe, we estimated an annual excess of 203 620 (empirical 95% CI 180 882-224 613) deaths attributed to cold and 20 173 (17 261-22 934) attributed to heat. These corresponded to age-standardised rates of 129 (empirical 95% CI 114-142) and 13 (11-14) deaths per 100 000 person-years. Results differed across Europe and age groups, with the highest effects in eastern European cities for both cold and heat. Interpretation: Maps of mortality risks and excess deaths indicate geographical differences, such as a north-south gradient and increased vulnerability in eastern Europe, as well as local variations due to urban characteristics. The modelling framework and results are crucial for the design of national and local health and climate policies and for projecting the effects of cold and heat under future climatic and socioeconomic scenarios.
- Global short-term mortality risk and burden associated with tropical cyclones from 1980 to 2019: a multi-country time-series studyPublication . Huang, Wenzhong; Li, Shanshan; Vogt, Thomas; Xu, Rongbin; Tong, Shilu; Molina, Tomás; Masselot, Pierre; Gasparrini, Antonio; Armstrong, Ben; Pascal, Mathilde; Royé, Dominic; Sheng Ng, Chris Fook; Vicedo-Cabrera, Ana Maria; Schwartz, Joel; Lavigne, Eric; Kan, Haidong; Goodman, Patrick; Zeka, Ariana; Hashizume, Masahiro; Diaz, Magali Hurtado; Valencia, César De la Cruz; Seposo, Xerxes; Nunes, Baltazar; Madureira, Joana; Kim, Ho; Lee, Whanhee; Tobias, Aurelio; Íñiguez, Carmen; Guo, Yue Leon; Pan, Shih-Chun; Zanobetti, Antonella; Dang, Tran Ngoc; Dung, Do Van; Geiger, Tobias; Otto, Christian; Johnson, Amanda; Hales, Simon; Pei Yu; Yang, Zhengyu; Ritchie, Elizabeth A.; Guo, YumingBackground: The global spatiotemporal pattern of mortality risk and burden attributable to tropical cyclones is unclear. We aimed to evaluate the global short-term mortality risk and burden associated with tropical cyclones from 1980 to 2019. Methods: The wind speed associated with cyclones from 1980 to 2019 was estimated globally through a parametric wind field model at a grid resolution of 0·5° × 0·5°. A total of 341 locations with daily mortality and temperature data from 14 countries that experienced at least one tropical cyclone day (a day with maximum sustained wind speed associated with cyclones ≥17·5 m/s) during the study period were included. A conditional quasi-Poisson regression with distributed lag non-linear model was applied to assess the tropical cyclone-mortality association. A meta-regression model was fitted to evaluate potential contributing factors and estimate grid cell-specific tropical cyclone effects. Findings: Tropical cyclone exposure was associated with an overall 6% (95% CI 4-8) increase in mortality in the first 2 weeks following exposure. Globally, an estimate of 97 430 excess deaths (95% empirical CI [eCI] 71 651-126 438) per decade were observed over the 2 weeks following exposure to tropical cyclones, accounting for 20·7 (95% eCI 15·2-26·9) excess deaths per 100 000 residents (excess death rate) and 3·3 (95% eCI 2·4-4·3) excess deaths per 1000 deaths (excess death ratio) over 1980-2019. The mortality burden exhibited substantial temporal and spatial variation. East Asia and south Asia had the highest number of excess deaths during 1980-2019: 28 744 (95% eCI 16 863-42 188) and 27 267 (21 157-34 058) excess deaths per decade, respectively. In contrast, the regions with the highest excess death ratios and rates were southeast Asia and Latin America and the Caribbean. From 1980-99 to 2000-19, marked increases in tropical cyclone-related excess death numbers were observed globally, especially for Latin America and the Caribbean and south Asia. Grid cell-level and country-level results revealed further heterogeneous spatiotemporal patterns such as the high and increasing tropical cyclone-related mortality burden in Caribbean countries or regions. Interpretation: Globally, short-term exposure to tropical cyclones was associated with a significant mortality burden, with highly heterogeneous spatiotemporal patterns. In-depth exploration of tropical cyclone epidemiology for those countries and regions estimated to have the highest and increasing tropical cyclone-related mortality burdens is urgently needed to help inform the development of targeted actions against the increasing adverse health impacts of tropical cyclones under a changing climate.
- Heat-related cardiorespiratory mortality: Effect modification by air pollution across 482 cities from 24 countriesPublication . Rai, Masna; Stafoggia, Massimo; de'Donato, Francesca; Scortichini, Matteo; Zafeiratou, Sofia; Vazquez Fernandez, Liliana; Zhang, Siqi; Katsouyanni, Klea; Samoli, Evangelia; Rao, Shilpa; Lavigne, Eric; Guo, Yuming; Kan, Haidong; Osorio, Samuel; Kyselý, Jan; Urban, Aleš; Orru, Hans; Maasikmets, Marek; Jaakkola, Jouni J.K.; Ryti, Niilo; Pascal, Mathilde; Hashizume, Masahiro; Fook Sheng Ng, Chris; Alahmad, Barrak; Hurtado Diaz, Magali; De la Cruz Valencia, César; Nunes, Baltazar; Madureira, Joana; Scovronick, Noah; Garland, Rebecca M.; Kim, Ho; Lee, Whanhee; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Maria Vicedo-Cabrera, Ana; Ragettli, Martina S.; Leon Guo, Yue-Liang; Pan, Shih-Chun; Li, Shanshan; Gasparrini, Antonio; Sera, Francesco; Masselot, Pierre; Schwartz, Joel; Zanobetti, Antonella; Bell, Michelle L.; Schneider, Alexandra; Breitner, SusanneHighlights: - Heat effect modification by air pollution on cardiovascular and respiratory mortality was investigated across 482 cities.- Heat effect was seen to be significantly modified by air pollutants PM10, PM2.5, O3, and NO2. -This study is the most extensive research to date investigating the heat effect modification on cardiovascular and respiratory mortality. - This is the first-ever study to deeply investigate effect modifications by air pollutants such as PM2.5 and NO2.
- Impacts of land-use and land-cover changes on temperature-related mortalityPublication . Orlov, Anton ; De Hertog, Steven J. ; Havermann, Felix ; Guo, Suqi ; Manola, Iris ; Lejeune, Quentin ; Schleussner, Carl-Friedrich ; Thiery, Wim ; Pongratz, Julia ; Humpenöder, Florian ; Popp, Alexander ; Aunan, Kristin ; Armstrong, Ben ; Royé, Dominic ; Cvijanovic, Ivana ; Lavigne, Eric ; Achilleos, Souzana ; Bell, Michelle ; Masselot, Pierre ; Sera, Francesco ; Vicedo-Cabrera, Ana Maria ; Gasparrini, Antonio ; Mistry, Malcolm N. ; Multi-Country Multi-City (MCC) Collaborative Research NetworkBackground: Land-use and land-cover change (LULCC) can substantially affect climate through biogeochemical and biogeophysical effects. Here, we examine the future temperature-mortality impact for two contrasting LULCC scenarios in a background climate of low greenhouse gas concentrations. The first LULCC scenario implies a globally sustainable land use and socioeconomic development (sustainability). In the second LULCC scenario, sustainability is implemented only in the Organisation for Economic Cooperation and Development countries (inequality). Methods: Using the Multi-Country Multi-City (MCC) dataset on mortality from 823 locations in 52 countries and territories, we estimated the temperature-mortality exposure-response functions (ERFs). The LULCC and noLULCC scenarios were implemented in three fully coupled Earth system models (ESMs): Community Earth System Model, Max Planck Institute Earth System Model, and European Consortium Earth System Model. Next, using temperature from the ESMs' simulations and the estimated location-specific ERFs, we assessed the temperature-related impact on mortality for the LULCC and noLULCC scenarios around the mid and end century. Results: Under sustainability, the multimodel mean changes in excess mortality range from -1.1 to +0.6 percentage points by 2050-2059 across all locations and from -1.4 to +0.5 percentage points by 2090-2099. Under inequality, these vary from -0.7 to +0.9 percentage points by 2050-2059 and from -1.3 to +2 percentage points by 2090-2099. Conclusions: While an unequal socioeconomic development and unsustainable land use could increase the burden of heat-related mortality in most regions, globally sustainable land use has the potential to reduce it in some locations. However, the total (cold and heat) impact on mortality is very location specific and strongly depends on the underlying climate change scenario due to nonlinearity in the temperature-mortality relationship.
- Improved global air quality health index reveals ozone and nitrogen dioxide as main drivers of air-pollution-related acute mortalityPublication . Huang, Wenzhong; Li, Tiantian; Masselot, Pierre; Xu, Rongbin; Gasparrini, Antonio; Sera, Francesco; Bell, Michelle L.; Hashizume, Masahiro; Breitner, Susanne; Tong, Shilu; Kan, Haidong; Yang, Zhengyu; Zhang, Yiwen; Yu, Wenhua; Yu, Pei; Zhou, Shuang; Sun, Qinghua; Zhang, Jingwei; Lavigne, Eric; Madureira, Joana; Guo, Yue Leon; Gaio, Vânia; Li, Shanshan; Guo, Yuming; MCC Collaborative Research NetworkAmbient air pollutants are leading contributors to global mortality. Despite the well-established risks, most studies have relied on single-pollutant models in limited regions, leaving the combined effects and individual contributions of pollutants unclear, particularly across countries. Here, we integrate daily mortality and air pollutant (nitrogen dioxide [NO], ozone [O], fine particulate matter, and sulfur dioxide) data from 482 cities in 12 countries/territories from 1998 to 2021 to assess the joint mortality risks and identify the main contributing pollutant through an air quality health index of multi-pollutant constrained groupwise additive models (AQHI-Multi). AQHI-Multi outperformed commonly used air quality indices in capturing the overall mortality risks. O and NO were the leading contributors (accounting for over 70% across countries/territories), with O's share increasing slightly to moderately in most countries/territories. These findings highlight the need for developing air quality indices using advanced multi-pollutant models and the emerging global significance of targeted control of O and NO.
