Browsing by Author "Koopmans, M."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Middle East respiratory syndrome coronavirus (MERS-CoV) infections in two returning travellers in the Netherlands, May 2014Publication . Kraaij-Dirkzwager, M.; Timen, A.; Dirksen, K.; Gelinck, L.; Leyten, E.; Groeneveld, P.; Jansen, C.; Jonges, M.; Raj, S.; Thurkow, I.; van Gajeldonk-Lafeber, R.; van der Eijk, A.; Koopmans, M.; MERS-CoV outbreak investigation team of the NetherlandsTwo patients, returning to the Netherlands from pilgrimage in Medina and Mecca, Kingdom of Saudi Arabia, were diagnosed with Middle East respiratory syndrome coronavirus (MERS-CoV) infection in May 2014. The source and mode of transmission have not yet been determined. Hospital-acquired infection and community-acquired infection are both possible.
- Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological studyPublication . Reusken, C.; Haagmans, B.; Gutierrez, C.; Godeke, G.J.; Meyer, B.; Muth, D.; Raj, V.S.; Smits-De Vries, L.; Corman, V.M.; Drexler, J.F.; Smits, S.L.; Sousa, R.; van Beek, J.; Nowotny, N.; van Maanen, K.; Hidalgo-Hermoso, E.; Bosch, B.J.; Rottier, P.; Osterhaus, A.; Gortázar-Schmidt, C.; Drosten, C.; Koopmans, M.A new betacoronavirus-Middle East respiratory syndrome coronavirus (MERS-CoV)-has been identified in patients with severe acute respiratory infection. Although related viruses infect bats, molecular clock analyses have been unable to identify direct ancestors of MERS-CoV. Anecdotal exposure histories suggest that patients had been in contact with dromedary camels or goats. We investigated possible animal reservoirs of MERS-CoV by assessing specific serum antibodies in livestock. METHODS: We took sera from animals in the Middle East (Oman) and from elsewhere (Spain, Netherlands, Chile). Cattle (n=80), sheep (n=40), goats (n=40), dromedary camels (n=155), and various other camelid species (n=34) were tested for specific serum IgG by protein microarray using the receptor-binding S1 subunits of spike proteins of MERS-CoV, severe acute respiratory syndrome coronavirus, and human coronavirus OC43. Results were confirmed by virus neutralisation tests for MERS-CoV and bovine coronavirus. FINDINGS: 50 of 50 (100%) sera from Omani camels and 15 of 105 (14%) from Spanish camels had protein-specific antibodies against MERS-CoV spike. Sera from European sheep, goats, cattle, and other camelids had no such antibodies. MERS-CoV neutralising antibody titres varied between 1/320 and 1/2560 for the Omani camel sera and between 1/20 and 1/320 for the Spanish camel sera. There was no evidence for cross-neutralisation by bovine coronavirus antibodies. INTERPRETATION: MERS-CoV or a related virus has infected camel populations. Both titres and seroprevalences in sera from different locations in Oman suggest widespread infection. FUNDING: European Union, European Centre For Disease Prevention and Control, Deutsche Forschungsgemeinschaft.
- Mosquito alert: leveraging citizen science to create a GBIF mosquito occurrence datasetPublication . Južnič-Zonta, Z.; Sanpera-Calbet, I.; Eritja, R.; Palmer, J.R.B.; Escobar, A.; Garriga, J.; Oltra, A.; Richter-Boix, A.; Schaffner, F.; della Torre, A.; Miranda, M.A.; Koopmans, M.; Barzon, L.; Bartumeus Ferre, F.; Mosquito Alert Digital Entomology Network; Mosquito Alert CommunityThe Mosquito Alert dataset includes occurrence records of adult mosquitoes collected worldwide in 2014–2020 through Mosquito Alert, a citizen science system for investigating and managing disease-carrying mosquitoes. Records are linked to citizen science-submitted photographs and validated by entomologists to determine the presence of five targeted European mosquito vectors: Aedes albopictus, Ae. aegypti, Ae. japonicus, Ae. koreicus, and Culex pipiens. Most records are from Spain, reflecting Spanish national and regional funding, but since autumn 2020 substantial records from other European countries are included, thanks to volunteer entomologists coordinated by the AIM-COST Action, and to technological developments to increase scalability. Among other applications, the Mosquito Alert dataset will help develop citizen science-based early warning systems for mosquito-borne disease risk. It can also be reused for modelling vector exposure risk, or to train machine-learning detection and classification routines on the linked images, to assist with data validation and establishing automated alert systems.
- Specific serology for emerging human coronaviruses by protein microarrayPublication . Reusken, C.; Mou, H.; Godeke, G. J.; Hoek, L.; Meyer, B.; Müller, M. A.; Haagmans, B.; Sousa, R.; Shuurman, N.; Rottier, P.; Osterhaus, A.; Drosten, C.; Bosch, B. J.; Koopmans, M.We present a serological assay for the specific detection of IgM and IgG antibodies against the emerging human coronavirus hCoV-EMC and the SARS-CoV based on protein microarray technology. The assay uses the S1 receptor-binding subunit of the spike protein of hCoV-EMC and SARS-CoV as antigens. The assay has been validated extensively using putative cross-reacting sera of patient cohorts exposed to the four common hCoVs and sera from convalescent patients infected with hCoV-EMC or SARS-CoV.
- Status, quality and specific needs of Zika virus (ZIKV) diagnostic capacity and capability in National Reference Laboratories for arboviruses in 30 EU/EEA countries, May 2016Publication . Mögling, R.; Zeller, H.; Revez, J.; Koopmans, M.; ZIKV reference laboratory group; Reusken, C.With international travel, Zika virus (ZIKV) is introduced to Europe regularly. A country's ability to robustly detect ZIKV introduction and local transmission is important to minimise the risk for a ZIKV outbreak. Therefore, sufficient expertise and diagnostic capacity and capability are required in European laboratories. To assess the capacity, quality, operational specifics (guidelines and algorithms), technical and interpretation issues and other possible difficulties that were related to ZIKV diagnostics in European countries, a questionnaire was conducted among national reference laboratories in 30 countries in the European Union/European Economic Area (EU/EEA) in May 2016. While the coverage and capacity of ZIKV diagnostics in the EU/EEA national reference laboratories were found to be adequate, the assessment of the quality and needs indicated several crucial points of improvement that will need support at national and EU/EEA level to improve ZIKV preparedness, response and EU/EEA ZIKV surveillance activities.
