Browsing by Author "Scherer, S.W."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- Functional impact of global rare copy number variation in autism spectrum disordersPublication . Pinto, D.; Pagnamenta, A.T.; Klei, L.; Anney, R.; Merico, D.; Regan, R.; Conroy, J.; Magalhaes, T.R.; Correia, C.; Abrahams, B.S.; Almeida, J.; Bacchelli, E.; Bader, G.D.; Bailey, A.J.; Baird, G.; Battaglia, A.; Berney, T.; Bolshakova, N.; Bölte, S.; Bolton, P.F.; Bourgeron, T.; Brennan, S.; Brian, J.; Bryson, S.E.; Carson, A.R.; Casallo, G.; Casey, J.; Chung, B.H.; Cochrane, L.; Corsello, C.; Crawford, E.L.; Crossett, A.; Cytrynbaum, C.; Dawson, G.; de Jonge, M.; Delorme, R.; Drmic, I.; Duketis, E.; Duque, F.; Estes, A.; Farrar, P.; Fernandez, B.A.; Folstein, S.E.; Fombonne, E.; Freitag, C.M.; Gilbert, J.; Gillberg, C.; Glessner, J.T.; Goldberg, J.; Green, A.; Green, J.; Guter, S.J.; Hakonarson, H.; Heron, E.A.; Hill, M.; Holt, R.; Howe, J.L.; Hughes, G.; Hus, V.; Igliozzi, R.; Kim, C.; Klauck, S.M.; Kolevzon, A.; Korvatska, O.; Kustanovich, V.; Lajonchere, C.M.; Lamb, J.A.; Laskawiec, M.; Leboyer, M.; Le Couteur, A.; Leventhal, B.L.; Lionel, A.C.; Liu, X.Q.; Lord, C.; Lotspeich, L.; Lund, S.C.; Maestrini, E.; Mahoney, W.; Mantoulan, C.; Marshall, C.R.; McConachie, H.; McDougle, C.J.; McGrath, J.; McMahon, W.M.; Merikangas, A.; Migita, O.; Minshew, N.J.; Mirza, G.K.; Munson, J.; Nelson, S.F.; Noakes, C.; Noor, A.; Nygren, G.; Oliveira, G.; Papanikolaou, K.; Parr, J.R.; Parrini, B.; Paton, T.; Pickles, A.; Pilorge, M.; Piven, J.; Ponting, C.P.; Posey, D.J.; Poustka, A.; Poustka, F.; Prasad, A.; Ragoussis, J.; Renshaw, K.; Rickaby, J.; Roberts, W.; Roeder, K.; Roge, B.; Rutter, M.L.; Bierut, L.J.; Rice, J.P.; Salt, J.; Sansom, K.; Sato, D.; Segurado, R.; Sequeira, A.F.; Senman, L.; Shah, N.; Sheffield, V.C.; Soorya, L.; Sousa, I.; Stein, O.; Sykes, N.; Stoppioni, V.; Strawbridge, C.; Tancredi, R.; Tansey, K.; Thiruvahindrapduram, B.; Thompson, A.P.; Thomson, S.; Tryfon, A.; Tsiantis, J.; Van Engeland, H.; Vincent, J.B.; Volkmar, F.; Wallace, S.; Wang, K.; Wang, Z.; Wassink, T.H.; Webber, C.; Weksberg, R.; Wing, K.; Wittemeyer, K.; Wood, S.; Wu, J.; Yaspan, B.L.; Zurawiecki, D.; Zwaigenbaum, L.; Buxbaum, J.D.; Cantor, R.M.; Cook, E.H.; Coon, H.; Cuccaro, M.L.; Devlin, B.; Ennis, S.; Gallagher, L.; Geschwind, D.H.; Gill, M.; Haines, J.L.; Hallmayer, J.; Miller, J.; Monaco, A.P.; Nurnberger Jr, J.I.; Paterson, A.D.; Pericak-Vance, M.A.; Schellenberg, G.D.; Szatmari, P.; Vicente, A.M.; Vieland, V.J.; Wijsman, E.M.; Scherer, S.W.; Sutcliffe, J.S.; Betancur, C.The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability. Although ASDs are known to be highly heritable ( approximately 90%), the underlying genetic determinants are still largely unknown. Here we analysed the genome-wide characteristics of rare (<1% frequency) copy number variation in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic copy number variants (CNVs) (1.19 fold, P = 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P = 3.4 x 10(-4)). Among the CNVs there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes such as SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene sets involved in cellular proliferation, projection and motility, and GTPase/Ras signalling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways.
- Gene-ontology enrichment analysis in two independent family-based samples highlights biologically plausible processes for autism spectrum disordersPublication . Anney, R.J.; Kenny, E.M.; O'Dushlaine, C.; Parkhomenka, E.; Buxbaum, J.D.; Sutcliffe, J.; Gill, M.; Gallagher, L.; Bailey, A.J.; Fernandez, B.A.; Szatmari, P.; Nurnberger Jr, J.I.; McDougle, C.J.; Posey, D.J.; Lord, C.; Corsello, C.; Hus, V.; Buxbaum, J.D.; Kolevzon, A.; Soorya, L.; Parkhomenko, E.; Scherer, S.W.; Leventhal, B.L.; Dawson, G.; Vieland, V.J.; Hakonarson, H.; Glessner, J.T.; Kim, C.; Wang, K.; Schellenberg, G.D.; Devlin, B.; Klei, L.; Patterson, A.; Minshew, N.; Sutcliffe, J.S.; Haines, J.L.; Lund, S.C.; Thomson, S.; Yaspan, B.L.; Coon, H.; Miller, J.; McMahon, W.M.; Munson, J.; Marshall, C.R.; Estes, A.; Wijsman, EM.; The Autism Genome Project; Pinto, D.; Vincent, J.B.; Fombonne, E.; Betancur, C.; Delorme, R.; Leboyer, M.; Bourgeron, T.; Mantoulan, C.; Roge, B.; Tauber, M.; Freitag, C.M.; Poustka, F.; Duketis, E.; Klauck, S.M.; Poustka, A.; Papanikolaou, K.; Tsiantis, J.; Gallagher, L.; Gill, M.; Anney, R.; Bolshakova, N.; Brennan, S.; Hughes, G.; McGrath, J.; Merikangas, A.; Ennis, S.; Green, A.; Casey, J.P.; Conroy, J.M.; Regan, R.; Shah, N.; Maestrini, E.; Bacchelli, E.; Minopoli, F.; Stoppioni, V.; Battaglia, A.; Igliozzi, R.; Parrini, B.; Tancredi, R.; Oliveira, G.; Almeida, J.; Duque, F.; Vicente, A.M.; Correia, C.; Magalhaes, T.R.; Gillberg, C.; Nygren, G.; Jonge, M.D.; Van Engeland, H.; Vorstman, J.A.; Wittemeyer, K.; Baird, G.; Bolton, P.F; Rutter, M.L.; Green, J.; Lamb, J.A.; Pickles, A.; Parr, J.R.; Couteur, A.L.; Berney, T.; McConachie, H.; Wallace, S.; Coutanche, M.; Foley, S.; White, K.; Monaco, A.P.; Holt, R.; Farrar, P.; Pagnamenta, A.T.; Mirza, G.K.; Ragoussis, J.; Sousa, I.; Sykes, N.; Wing, K.; Hallmayer, J.; Cantor, R.M.; Nelson, S.F.; Geschwind, D.H.; Abrahams, B.S.; Volkmar, F.; Pericak-Vance, M.A.; Cuccaro, M.L.; Gilbert, J.; Cook, E.H.; Guter, S.J.; Jacob, S.Recent genome-wide association studies (GWAS) have implicated a range of genes from discrete biological pathways in the aetiology of autism. However, despite the strong influence of genetic factors, association studies have yet to identify statistically robust, replicated major effect genes or SNPs. We apply the principle of the SNP ratio test methodology described by O'Dushlaine et al to over 2100 families from the Autism Genome Project (AGP). Using a two-stage design we examine association enrichment in 5955 unique gene-ontology classifications across four groupings based on two phenotypic and two ancestral classifications. Based on estimates from simulation we identify excess of association enrichment across all analyses. We observe enrichment in association for sets of genes involved in diverse biological processes, including pyruvate metabolism, transcription factor activation, cell-signalling and cell-cycle regulation. Both genes and processes that show enrichment have previously been examined in autistic disorders and offer biologically plausibility to these findings.
- Genetic and Functional Analyses of SHANK2 Mutations Suggest a Multiple Hit Model of Autism Spectrum DisordersPublication . Leblond, C.S.; Heinrich, J.; Delorme, R.; Proepper, C.; Betancur, C.; Huguet, G.; Konyukh, M.; Chaste, P.; Ey, E.; Rastam, M.; Anckarsäter, H.; Nygren, G.; Gillberg, I.C.; Melke, J.; Toro, R.; Regnault, B.; Fauchereau, F.; Mercati, O.; Lemière, N.; Skuse, D.; Poot, M.; Holt, R.; Monaco, A.P.; Järvelä, I.; Kantojärvi, K.; Vanhala, R.; Curran, S.; Collier, D.A.; Bolton, P.; Chiocchetti, A; Klauck, S.M.; Poustka, F.; Freitag, C.M.; Waltes, R.; Kopp, M.; Duketis, E.; Bacchelli, E.; Minopoli, F.; Ruta, L.; Battaglia, A.; Mazzone, L.; Maestrini, E.; Sequeira, A.F.; Oliveira, B.; Vicente, A.M.; Oliveira, G.; Pinto, D.; Scherer, S.W.; Zelenika, D.; Delepine, M.; Lathrop, M.; Bonneau, D.; Guinchat, V.; Devillard, F.; Assouline, B.; Mouren, M.C.; Leboyer, M.; Gillberg, C.; Boeckers, T.M.Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (P = 0.004, OR = 2.37, 95% CI = 1.23-4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11-q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the "multiple hit model" for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD.
- A genome-wide scan for common alleles affecting risk for autismPublication . Anney, R.; Klei, L.; Pinto, D.; Regan, R.; Conroy, J.; Magalhaes, T.R.; Correia, C.; Abrahams, B.S.; Sykes, N.; Pagnamenta, A.T.; Almeida, J.; Bacchelli, E.; Bailey, A.J.; Baird, G.; Battaglia, A.; Berney, T.; Bolshakova, N.; Bölte, S.; Bolton, P.F.; Bourgeron, T.; Brennan, S.; Brian, J.; Carson, A.R.; Casallo, G.; Casey, J.; Chu, S.H.; Cochrane, L.; Corsello, C.; Crawford, E.L.; Crossett, A.; Dawson, G.; de Jonge, M.; Delorme, R.; Drmic, I.; Duketis, E.; Duque, F.; Estes, A.; Farrar, P.; Fernandez, B.A.; Folstein, S.E.; Fombonne, E.; Freitag, C.M.; Gilbert, J.; Gillberg, C.; Glessner, J.T.; Goldberg, J.; Green, J.; Guter, S.J.; Hakonarson, H.; Heron, E.A.; Hill, M.; Holt, R.; Howe, J.L.; Hughes, G.; Hus, V.; Igliozzi, R.; Kim, C.; Klauck, S.M.; Kolevzon, A.; Korvatska, O.; Kustanovich, V.; Lajonchere, C.M.; Lamb, J.A.; Laskawiec, M.; Leboyer, M.; Le Couteur, A.; Leventhal, B.L.; Lionel, A.C.; Liu, X.Q.; Lord, C.; Lotspeich, L.; Lund, S.C.; Maestrini, E.; Mahoney, W.; Mantoulan, C.; Marshall, C.R.; McConachie, H.; McDougle, C.J.; McGrath, J.; McMahon, W.M.; Melhem, N.M.; Merikangas, A.; Migita, O.; Minshew, N.J.; Mirza, G.K.; Munson, J.; Nelson, S.F.; Noakes, C.; Noor, A.; Nygren, G.; Oliveira, G.; Papanikolaou, K.; Parr, J.R.; Parrini, B.; Paton, T.; Pickles, A.; Piven, J.; Posey, D.J.; Poustka, A.; Poustka, F.; Prasad, A.; Ragoussis, J.; Renshaw, K.; Rickaby, J.; Roberts, W.; Roeder, K.; Roge, B.; Rutter, M.L.; Bierut, L.J.; Rice, J.P.; Salt, J.; Sansom, K.; Sato, D.; Segurado, R.; Senman, L.; Shah, N.; Sheffield, V.C.; Soorya, L.; Sousa, I.; Stoppioni, V.; Strawbridge, C.; Tancredi, R.; Tansey, K.; Thiruvahindrapduram, B.; Thompson, A.P.; Thomson, S.; Tryfon, A.; Tsiantis, J.; Van Engeland, H.; Vincent, J.B.; Volkmar, F.; Wallace, S.; Wang, K.; Wang, Z.; Wassink, T.H.; Wing, K.; Wittemeyer, K.; Wood, S.; Yaspan, B.L.; Zurawiecki, D.; Zwaigenbaum, L.; Betancur, C.; Buxbaum, J.D.; Cantor, R.M.; Cook, E.H.; Coon, H.; Cuccaro, M.L.; Gallagher, L.; Geschwind, D.H.; Gill, M.; Haines, J.L.; Miller, J.; Monaco, A.P.; Nurnberger Jr, J.I.; Paterson, A.D.; Pericak-Vance, M.A.; Schellenberg, G.D.; Scherer, S.W.; Sutcliffe, J.S.; Szatmari, P.; Vicente, A.M.; Vieland, V.J.; Wijsman, E.M.; Devlin, B.; Ennis, S.; Hallmayer, J.Although autism spectrum disorders (ASDs) have a substantial genetic basis, most of the known genetic risk has been traced to rare variants, principally copy number variants (CNVs). To identify common risk variation, the Autism Genome Project (AGP) Consortium genotyped 1558 rigorously defined ASD families for 1 million single-nucleotide polymorphisms (SNPs) and analyzed these SNP genotypes for association with ASD. In one of four primary association analyses, the association signal for marker rs4141463, located within MACROD2, crossed the genome-wide association significance threshold of P < 5 × 10(-8). When a smaller replication sample was analyzed, the risk allele at rs4141463 was again over-transmitted; yet, consistent with the winner's curse, its effect size in the replication sample was much smaller; and, for the combined samples, the association signal barely fell below the P < 5 × 10(-8) threshold. Exploratory analyses of phenotypic subtypes yielded no significant associations after correction for multiple testing. They did, however, yield strong signals within several genes, KIAA0564, PLD5, POU6F2, ST8SIA2 and TAF1C.
- Individual common variants exert weak effects on the risk for autism spectrum disorderspiPublication . Anney, R.; Klei, L.; Pinto, D.; Almeida, J.; Bacchelli, E.; Baird, G.; Bolshakova, N.; Bölte, S.; Bolton, P.F.; Bourgeron, T.; Brennan, S.; Brian, J.; Casey, J.; Conroy, J.; Correia, C.; Corsello, C.; Crawford, E.L.; de Jonge, M.; Delorme, R.; Duketis, E.; Duque, F.; Estes, A.; Farrar, P.; Fernandez, B.A.; Folstein, S.E.; Fombonne, E.; Gilbert, J.; Gillberg, C.; Glessner, J.T.; Green, A.; Green, J.; Guter, S.J.; Heron, E.A.; Holt, R.; Howe, J.L.; Hughes, G.; Hus, V.; Igliozzi, R.; Jacob, S.; Kenny, G.P.; Kim, C.; Kolevzon, A.; Kustanovich, V.; Lajonchere, C.M.; Lamb, J.A.; Law-Smith, M.; Leboyer, M.; Le Couteur, A.; Leventhal, B.L.; Liu, X.Q.; Lombard, F.; Lord, C.; Lotspeich, L.; Lund, S.C.; Magalhaes, T.R.; Mantoulan, C.; McDougle, C.J.; Melhem, N.M.; Merikangas, A.; Minshew, N.J.; Mirza, G.K.; Munson, J.; Noakes, C.; Nygren, G.; Papanikolaou, K.; Pagnamenta, A.T.; Parrini, B.; Paton, T.; Pickles, A.; Posey, D.J.; Poustka, F.; Ragoussis, J.; Regan, R.; Roberts, W.; Roeder, K.; Roge, B.; Rutter, M.L.; Schlitt, S.; Shah, N.; Sheffield, V.C.; Soorya, L.; Sousa, I.; Stoppioni, V.; Sykes, N.; Tancredi, R.; Thompson, A.P.; Thomson, S.; Tryfon, A.; Tsiantis, J.; Van Engeland, H.; Vincent, J.B.; Volkmar, F.; Vorstman, J.; Wallace, S.; Wing, K.; Wittemeyer, K.; Wood, S.; Zurawiecki, D.; Zwaigenbaum, L.; Bailey, AJ; Battaglia, A.; Cantor, R.M.; Coon, H.; Cuccaro, M.L.; Dawson, G.; Ennis, S.; Freitag, C.M.; Geschwind, D.H.; Haines, J.L.; Klauck, S.M.; McMahon, W.M.; Maestrini, E.; Miller, J.; Monaco, A.P.; Nelson, S.F.; Nurnberger Jr, J.I.; Oliveira, G.; Parr, J.R.; Pericak-Vance, M.A.; Piven, J.; Schellenberg, G.D.; Scherer, S.W.; Vicente, A.M.; Wassink, T.H.; Wijsman, E.M.; Betancur, C.; Buxbaum, J.D.; Cook, E.H.; Gallagher, L.; Gill, M.; Hallmayer, J.; Paterson, A.D.; Sutcliffe, J.S.; Szatmari, P.; Vieland, V.J.; Hakonarson, H.; Devlin, B.While it is apparent that rare variation can play an important role in the genetic architecture of autism spectrum disorders (ASDs), the contribution of common variation to the risk of developing ASD is less clear. To produce a more comprehensive picture, we report Stage 2 of the Autism Genome Project genome-wide association study, adding 1301 ASD families and bringing the total to 2705 families analysed (Stages 1 and 2). In addition to evaluating the association of individual single nucleotide polymorphisms (SNPs), we also sought evidence that common variants, en masse, might affect the risk. Despite genotyping over a million SNPs covering the genome, no single SNP shows significant association with ASD or selected phenotypes at a genome-wide level. The SNP that achieves the smallest P-value from secondary analyses is rs1718101. It falls in CNTNAP2, a gene previously implicated in susceptibility for ASD. This SNP also shows modest association with age of word/phrase acquisition in ASD subjects, of interest because features of language development are also associated with other variation in CNTNAP2. In contrast, allele scores derived from the transmission of common alleles to Stage 1 cases significantly predict case status in the independent Stage 2 sample. Despite being significant, the variance explained by these allele scores was small (Vm< 1%). Based on results from individual SNPs and their en masse effect on risk, as inferred from the allele score results, it is reasonable to conclude that common variants affect the risk for ASD but their individual effects are modest.
- A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorderPublication . Casey, J.P.; Magalhaes, T.; Conroy, J.M.; Regan, R.; Shah, N.; Anney, R.; Shields, D.C.; Abrahams, B.S.; Almeida, J.; Bacchelli, E.; Bailey, A.J.; Piven, J.; Posey, D.J.; Poustka, A.; Poustka, F.; Ragoussis, J.; Roge, B.; Rutter, M.L.; Sequeira, A.F.; Soorya, L.; Sousa, I.; Wittemeyer, K.; Sykes, N.; Stoppioni, V.; Tancredi, R.; Tauber, M.; Thompson, A.P.; Thomson, S.; Tsiantis, J.; Van Engeland, H.; Vincent, J.B.; Volkmar, F.; Yaspan, B.L.; Vorstman, J.A.; Wallace, S.; Wang, K.; Wassink, T.H.; White, K.; Wing, K.; Zwaigenbaum, L.; Betancur, C.; Buxbaum, J.D.; Cantor, R.M.; Cook, E.H.; Coon, H.; Cuccaro, M.L.; Geschwind, D.H.; Baird, G.; Haines, J.L.; Hallmayer, J.; Monaco, A.P.; Nurnberger, J.I. Jr; Pericak-Vance, M.A.; Schellenberg, G.D.; Scherer, S.W.; Sutcliffe, J.S.; Szatmari, P.; Vieland, V.J.; Battaglia, A.; Wijsman, E.M.; Green, A.; Gill, M.; Gallagher, L.; Vicente, A.M.; Ennis, S.; Berney, T.; Bolshakova, N.; Bolton, P.F.; Bourgeron, T.; Brennan, S.; Cali, P.; Correia, C.; Corsello, C.; Coutanche, M.; Dawson, G.; de Jonge, M.; Delorme, R.; Duketis, E.; Duque, F.; Estes, A.; Farrar, P.; Fernandez, B.A.; Folstein, S.E.; Foley, S.; Fombonne, E.; Freitag, C.M.; Gilbert, J.; Gillberg, C.; Glessner, J.T.; Green, J.; Guter, S.J.; Hakonarson, H.; Holt, R.; Hughes, G.; Hus, V.; Igliozzi, R.; Kim, C.; Klauck, S.M.; Kolevzon, A.; Lamb, J.A.; Leboyer, M.; Le Couteur, A.; Leventhal, B.L.; Lord, C.; Lund, S.C.; Maestrini, E.; Mantoulan, C.; Marshall, C.R.; McConachie, H.; McDougle, C.J.; McGrath, J.; McMahon, W.M.; Merikangas, A.; Miller, J.; Minopoli, F.; Mirza, G.K.; Munson, J.; Nelson, S.F.; Nygren, G.; Oliveira, G.; Pagnamenta, A.T.; Papanikolaou, K.; Parr, J.R.; Parrini, B.; Pickles, A.; Pinto, D.Autism spectrum disorder (ASD) is a highly heritable disorder of complex and heterogeneous aetiology. It is primarily characterized by altered cognitive ability including impaired language and communication skills and fundamental deficits in social reciprocity. Despite some notable successes in neuropsychiatric genetics, overall, the high heritability of ASD (~90%) remains poorly explained by common genetic risk variants. However, recent studies suggest that rare genomic variation, in particular copy number variation, may account for a significant proportion of the genetic basis of ASD. We present a large scale analysis to identify candidate genes which may contain low-frequency recessive variation contributing to ASD while taking into account the potential contribution of population differences to the genetic heterogeneity of ASD. Our strategy, homozygous haplotype (HH) mapping, aims to detect homozygous segments of identical haplotype structure that are shared at a higher frequency amongst ASD patients compared to parental controls. The analysis was performed on 1,402 Autism Genome Project trios genotyped for 1 million single nucleotide polymorphisms (SNPs). We identified 25 known and 1,218 novel ASD candidate genes in the discovery analysis including CADM2, ABHD14A, CHRFAM7A, GRIK2, GRM3, EPHA3, FGF10, KCND2, PDZK1, IMMP2L and FOXP2. Furthermore, 10 of the previously reported ASD genes and 300 of the novel candidates identified in the discovery analysis were replicated in an independent sample of 1,182 trios. Our results demonstrate that regions of HH are significantly enriched for previously reported ASD candidate genes and the observed association is independent of gene size (odds ratio 2.10). Our findings highlight the applicability of HH mapping in complex disorders such as ASD and offer an alternative approach to the analysis of genome-wide association data.
- Novel method for combined linkage and genome-wide association analysis finds evidence of distinct genetic architecture for two subtypes of autismPublication . Vieland, V.J.; Hallmayer, J.; Huang, Y.; Pagnamenta, A.T.; Pinto, D.; Khan, H.; Monaco, A.P.; Paterson, A.D.; Scherer, S.W.; Sutcliffe, J.S.; Szatmari, P.; The Autism Genome Project (AGP)The Autism Genome Project has assembled two large datasets originally designed for linkage analysis and genome-wide association analysis, respectively: 1,069 multiplex families genotyped on the Affymetrix 10 K platform, and 1,129 autism trios genotyped on the Illumina 1 M platform. We set out to exploit this unique pair of resources by analyzing the combined data with a novel statistical method, based on the PPL statistical framework, simultaneously searching for linkage and association to loci involved in autism spectrum disorders (ASD). Our analysis also allowed for potential differences in genetic architecture for ASD in the presence or absence of lower IQ, an important clinical indicator of ASD subtypes. We found strong evidence of multiple linked loci; however, association evidence implicating specific genes was low even under the linkage peaks. Distinct loci were found in the lower IQ families, and these families showed stronger and more numerous linkage peaks, while the normal IQ group yielded the strongest association evidence. It appears that presence/absence of lower IQ (LIQ) demarcates more genetically homogeneous subgroups of ASD patients, with not just different sets of loci acting in the two groups, but possibly distinct genetic architecture between them, such that the LIQ group involves more major gene effects (amenable to linkage mapping), while the normal IQ group potentially involves more common alleles with lower penetrances. The possibility of distinct genetic architecture across subtypes of ASD has implications for further research and perhaps for research approaches to other complex disorders as well.
- Recurrent duplications of the annexin A1 gene (ANXA1) in autism spectrum disordersPublication . Correia, C.T.; Conceição, I.C.; Oliveira, B.; Coelho, J.; Sousa, I.; Sequeira, A.F.; Almeida, J.; Café, C.; Duque, F; Mouga, S.; Roberts, W.; Gao, K.; Lowe, J.K.; Thiruvahindrapuram, B.; Walker, S.; Marshall, C.R.; Pinto, D.; Nurnberger, J.I.; Scherer, S.W.; Geschwind, D.H.; Oliveira, G.; Vicente, A.M.Validating the potential pathogenicity of copy number variants (CNVs) identified in genome-wide studies of autism spectrum disorders (ASD) requires detailed assessment of case/control frequencies, inheritance patterns, clinical correlations, and functional impact. Here, we characterize a small recurrent duplication in the annexin A1 (ANXA1) gene, identified by the Autism Genome Project (AGP) study.
- The impact of the metabotropic glutamate receptor and other gene family interaction networks on autismPublication . Hadley, D.; Wu, Z.L.; Kao, C.; Kini, A.; Mohamed-Hadley, A.; Thomas, K.; Vazquez, L.; Qiu, H.; Mentch, F.; Pellegrino, R.; Kim, C.; Connolly, J.; Glessner, J.; Hakonarson, H.; Pinto, D.; Merikangas, A.; Klei, L.; Vorstman, J.A.; Thompson, A.; Regan, R.; Pagnamenta, A.T.; Oliveira, B.; Magalhaes, T.R.; Gilbert, J.; Duketis, E.; De Jonge, M.V.; Cuccaro, M.; Correia, C.T.; Conroy, J.; Conceição, I.C.; Chiocchetti, A.G.; Casey, J.P.; Bolshakova, N.; Bacchelli, E.; Anney, R.; Zwaigenbaum, L.; Wittemeyer, K.; Wallace, S.; Engeland, Hv; Soorya, L.; Rogé, B.; Roberts, W.; Poustka, F.; Mouga, S.; Minshew, N.; McGrew, S.G.; Lord, C.; Leboyer, M.; Le Couteur, A.S.; Kolevzon, A.; Jacob, S.; Guter, S.; Green, J.; Green, A.; Gillberg, C.; Fernandez, B.A.; Duque, F.; Delorme, R.; Dawson, G.; Café, C.; Brennan, S.; Bourgeron, T.; Bolton, P.F.; Bölte, S.; Bernier, R.; Baird, G.; Bailey, A.J.; Anagnostou, E.; Almeida, J.; Wijsman, E.M.; Vieland, V.J.; Vicente, A.M.; Schellenberg, G.D.; Pericak-Vance, M.; Paterson, A.D.; Parr, J.R.; Oliveira, G.; Almeida, J.; Café, C.; Mouga, S.; Correia, C.; Nurnberger, J.I.; Monaco, A.P.; Maestrini, E.; Klauck, S.M.; Hakonarson, H.; Haines, J.L.; Geschwind, D.H.; Freitag, C.M.; Folstein, S.E.; Ennis, S.; Coon, H.; Battaglia, A.; Szatmari, P.; Sutcliffe, J.S.; Hallmayer, J.; Gill, M.; Cook, E.H.; Buxbaum, J.D.; Devlin, B.; Gallagher, L.; Betancur, C.; Scherer, S.W.Although multiple reports show that defective genetic networks underlie the aetiology of autism, few have translated into pharmacotherapeutic opportunities. Since drugs compete with endogenous small molecules for protein binding, many successful drugs target large gene families with multiple drug binding sites. Here we search for defective gene family interaction networks (GFINs) in 6,742 patients with the ASDs relative to 12,544 neurologically normal controls, to find potentially druggable genetic targets. We find significant enrichment of structural defects (P≤2.40E-09, 1.8-fold enrichment) in the metabotropic glutamate receptor (GRM) GFIN, previously observed to impact attention deficit hyperactivity disorder (ADHD) and schizophrenia. Also, the MXD-MYC-MAX network of genes, previously implicated in cancer, is significantly enriched (P≤3.83E-23, 2.5-fold enrichment), as is the calmodulin 1 (CALM1) gene interaction network (P≤4.16E-04, 14.4-fold enrichment), which regulates voltage-independent calcium-activated action potentials at the neuronal synapse. We find that multiple defective gene family interactions underlie autism, presenting new translational opportunities to explore for therapeutic interventions.
