Browsing by Author "Scheepers, Paul T.J."
Now showing 1 - 10 of 16
Results Per Page
Sort Options
- Assessment of occupational exposure to hexavalent chromium – recommendations from HBM4EU chromate studyPublication . Santonen, Tiina; Bocca, Beatrice; Bousoumah, Radia; Duca, Radu Corneliu; Galea, Karen S.; Godderis, Lode; Göen, Thomas; Hardy, Emilie; Iavicoli, Ivo; Janasik, Beata; Jones, Kate; Leese, Elizabeth; Leso, Veruscka; Louro, Henriqueta; Majery, Nicole; Ndaw, Sophie; Pinhal, Hermínia; Porras, Simo P.; Scheepers, Paul T.J.; Sepai, Ovnair; Silva, Maria João; van Nieuwenhuyse, An; Verdonck, Jelle; Viegas, Susana; Wasowicz, WojciechIntroduction: Hexavalent chromium (Cr(VI)) is an important occupational carcinogen. In addition to air monitoring biomonitoring is commonly applied to monitor exposure to Cr(VI). Within the EU biomonitoring initiative, HBM4EU, we explored the applicability of different biomonitoring methods in the assessment of occupational exposure to Cr(VI) in welding and surface treatment activities. Materials and Methods: A multi-center cross-sectional study was performed in Belgium, Finland, France, Italy, Poland, Portugal, the Netherlands, Luxembourg and United Kingdom. Harmonized procedures were used to collect biological and industrial hygiene samples. Contextual information was collected using questionnaires. Altogether 602 exposed workers and controls were included in the study. Exposure biomarkers studied included urinary, red blood cell (RBC) and plasma Cr, and exhaled breath condensate (EBC) Cr(VI)/Cr(III). In addition, number of effect biomarkers were studied. Results: All exposure markers showed highest exposure levels among chrome plating workers. U-Cr showed a good correlation with air Cr(VI) in bath platers and welders. Observed low correlations between different exposure biomarkers suggest that these approaches are not interchangeable but rather complementary. Conclusions: U-Cr showed its value as the first approach for the assessment of internal exposure to Cr(VI). We recommend pre- and post-shift samples for low exposure levels. RBC/P-Cr and EBC-Cr(VI)/Cr(III) provide additional information when more specific information on exposure is needed. The current exposure levels require analytical methods with high sensitivity.
- Caracterização de biomarcadores de genotoxicidade em trabalhadores expostos a crómio hexavalente: um estudo no âmbito da Iniciativa Europeia em Biomonitorização HumanaPublication . Tavares, Ana; Aimonen, Kukka; Ndaw, Sophie; Fučić, Aleksandra; Catalán, Julia; Duca, Radu Corneliu; Godderis, Lode; Gomes, Bruno C.; Janasik, Beata; Ladeira, Carina; Louro, Henriqueta; Namorado, Sónia; Van Nieuwenhuyse, An; Norppa, Hannu; Scheepers, Paul T.J.; Ventura, Célia; Verdonck, Jelle; Viegas, Susana; Wasowicz, Wojciech; Santonen, Tiina; Silva, Maria JoãoNo âmbito da Iniciativa Europeia em Biomonitorização Humana (HBM4EU) realizou-se um estudo ocupacional, envolvendo trabalhadores com potencial exposição a crómio hexavalente [Cr( VI)], um reconhecido agente carcinogénico. No presente estudo são apresentados os resultados de biomarcadores de genotoxicidade, incluindo a análise de lesão no DNA e de alterações cromossómicas em células sanguíneas. O estudo foi realizado em vários Países Europeus e abrangeu trabalhadores de diversos setores industriais e atividades, bem como um grupo de controlo constituído por trabalhadores administrativos das mesmas empresas (controlo interno) e de outras não relacionadas com produção/aplicação de Cr( VI) (controlo externo). Os resultados mostraram níveis de alterações cromossómicas (ensaio do micronúcleo) e de lesão no DNA (ensaio do cometa) significativamente aumentados nos trabalhadores expostos comparativamente aos controlos externos ( p=0,03; p<0,001, respetivamente). Estes resultados sugerem que mesmo um baixo nível de exposição ao Cr( VI) representa um risco acrescido para a saúde dos trabalhadores e, principalmente, para os que realizam cromagem em banho. O grupo controlo interno apresentou níveis médios de lesões no DNA e nos cromossomas comparáveis aos do grupo exposto, salientando a relevância de se considerarem também em risco. O uso de biomarcadores de efeito demonstrou ser crucial para a deteção precoce de efeitos biológicos decorrentes de baixos níveis de exposição ao Cr( VI), contribuindo para a identificação de subgrupos em maior risco. O presente estudo vem apoiar a necessidade de uma reavaliação do limite de exposição ocupacional a Cr( VI), bem como da implementação de medidas de gestão de risco conducentes a uma melhor proteção da saúde dos trabalhadores.
- From inequitable to sustainable e-waste processing for reduction of impact on human health and the environmentPublication . Ádám, Balázs; Göen, Thomas; Scheepers, Paul T.J.; Adliene, Diana; Batinic, Bojan; Budnik, Lygia T.; Duca, Radu-Corneliu; Ghosh, Manosij; Giurgiu, Doina I.; Godderis, Lode; Goksel, Ozlem; Hansen, Karoline K.; Kassomenos, Pavlos; Milic, Natasa; Orru, Hans; Paschalidou, Anastasia; Petrovic, Maja; Puiso, Judita; Radonic, Jelena; Sekulic, Maja T.; Teixeira, Joao Paulo; Zaid, Hilal; Au, William W.Recycling of electric and electronic waste products (e-waste) which amounted to more than 50 million metric tonnes per year worldwide is a massive and global operation. Unfortunately, an estimated 70-80% of this waste has not been properly managed because the waste went from developed to low-income countries to be dumped into landfills or informally recycled. Such recycling has been carried out either directly on landfill sites or in small, often family-run recycling shops without much regulations or oversights. The process traditionally involved manual dismantling, cleaning with hazardous solvents, burning and melting on open fires, etc., which would generate a variety of toxic substances and exposure/hazards to applicators, family members, proximate residents and the environment. The situation clearly calls for global responsibility to reduce the impact on human health and the environment, especially in developing countries where poor residents have been shouldering the hazardous burden. On the other hand, formal e-waste recycling has been mainly conducted in small scales in industrialised countries. Whether the latter process would impose less risk to populations and environment has not been determined yet. Therefore, the main objectives of this review are: 1. to address current trends and emerging threats of not only informal but also formal e-waste management practices, and 2. to propose adequate measures and interventions. A major recommendation is to conduct independent surveillance of compliance with e-waste trading and processing according to the Basel Ban Amendment. The recycling industry needs to be carefully evaluated by joint effort from international agencies, producing industries and other stakeholders to develop better processes. Subsequent transition to more sustainable and equitable e-waste management solutions should result in more effective use of natural resources, and in prevention of adverse effects on health and the environment.
- HBM4EU chromates study - Overall results and recommendations for the biomonitoring of occupational exposure to hexavalent chromiumPublication . Santonen, Tiina; Porras, Simo P.; Bocca, Beatrice; Bousoumah, Radia; Duca, Radu Corneliu; Galea, Karen S.; Godderis, Lode; Göen, Thomas; Hardy, Emilie; Iavicoli, Ivo; Janasik, Beata; Jones, Kate; Leese, Elizabeth; Leso, Veruscka; Louro, Henriqueta; Majery, Nicole; Ndaw, Sophie; Pinhal, Hermínia; Ruggieri, Flavia; Silva, Maria João; van Nieuwenhuyse, An; Verdonck, Jelle; Viegas, Susana; Wasowicz, Wojciech; Sepai, Ovnair; Scheepers, Paul T.J.; Aimonen, Kukka; Antoine, Guillaume; Anzion, Rob; Burgart, Manuella; Castaño, Argelia; Cattaneo, Andrea; Cavallo, Domenico Maria; De Palma, Giuseppe; Denis, Flavien; Gambelunghe, Angela; Gomes, Bruno; Hanser, Ogier; Helenius, Riikka; Ladeira, Carina; López, Marta Esteban; Lovreglio, Piero; Marsan, Philippe; Melczer, Mathieu; Nogueira, Ana; Pletea, Elisabeta; Poels, Katrien; Remes, Jouko; Ribeiro, Edna; Santos, Sílvia Reis; Schaefers, Françoise; Spankie, Sally; Spoek, Robert; Rizki, Mohamed; Rousset, Davy; van Dael, Maurice; Veijalainen, Henna; HBM4EU chromates study teamExposure to hexavalent chromium [Cr(VI)] may occur in several occupational activities, e.g., welding, Cr(VI) electroplating and other surface treatment processes. The aim of this study was to provide EU relevant data on occupational Cr(VI) exposure to support the regulatory risk assessment and decision-making. In addition, the capability and validity of different biomarkers for the assessment of Cr(VI) exposure were evaluated. The study involved nine European countries and involved 399 workers in different industry sectors with exposures to Cr(VI) such as welding, bath plating, applying or removing paint and other tasks. We also studied 203 controls to establish a background in workers with no direct exposure to Cr(VI). We applied a cross-sectional study design and used chromium in urine as the primary biomonitoring method for Cr(VI) exposure. Additionally, we studied the use of red blood cells (RBC) and exhaled breath condensate (EBC) for biomonitoring of exposure to Cr(VI). Personal measurements were used to study exposure to inhalable and respirable Cr(VI) by personal air sampling. Dermal exposure was studied by taking hand wipe samples. The highest internal exposures were observed in the use of Cr(VI) in electrolytic bath plating. In stainless steel welding the internal Cr exposure was clearly lower when compared to plating activities. We observed a high correlation between chromium urinary levels and air Cr(VI) or dermal total Cr exposure. Urinary chromium showed its value as a first approach for the assessment of total, internal exposure. Correlations between urinary chromium and Cr(VI) in EBC and Cr in RBC were low, probably due to differences in kinetics and indicating that these biomonitoring approaches may not be interchangeable but rather complementary. This study showed that occupational biomonitoring studies can be conducted successfully by multi-national collaboration and provide relevant information to support policy actions aiming to reduce occupational exposure to chemicals.
- HBM4EU chromates study - Reflection and lessons learnt from designing and undertaking a collaborative European biomonitoring study on occupational exposure to hexavalent chromiumPublication . Galea, Karen S.; Porras, Simo P.; Viegas, Susana; Bocca, Beatrice; Bousoumah, Radia; Duca, Radu Corneliu; Godderis, Lode; Iavicoli, Ivo; Janasik, Beata; Jones, Kate; Knudsen, Lisbeth E.; Leese, Elizabeth; Leso, Veruscka; Louro, Henriqueta; Ndaw, Sophie; Ruggieri, Flavia; Sepai, Ovnair; Scheepers, Paul T.J.; Silva, Maria J.; Wasowicz, Wojciech; Santonen, TiinaThe EU human biomonitoring initiative, HBM4EU, aims to co-ordinate and advance human biomonitoring (HBM) across Europe. As part of HBM4EU, we presented a protocol for a multicentre study to characterize occupational exposure to hexavalent chromium (Cr(VI)) in nine European countries (HBM4EU chromates study). This study intended to collect data on current occupational exposure and to test new indicators for chromium (Cr) biomonitoring (Cr(VI) in exhaled breath condensate and Cr in red blood cells), in addition to traditional urinary total Cr analyses. Also, data from occupational hygiene samples and biomarkers of early biological effects, including genetic and epigenetic effects, was obtained, complementing the biomonitoring information. Data collection and analysis was completed, with the project findings being made separately available. As HBM4EU prepares to embark on further European wide biomonitoring studies, we considered it important to reflect on the experiences gained through our harmonised approach. Several practical aspects are highlighted for improvement in future studies, e.g., more thorough/earlier training on the implementation of standard operating procedures for field researchers, training on the use of the data entry template, as well as improved company communications. The HBM4EU chromates study team considered that the study had successfully demonstrated the feasibility of conducting a harmonised multicentre investigation able to achieve the research aims and objectives. This was largely attributable to the engaged multidisciplinary network, committed to deliver clearly understood goals. Such networks take time and investment to develop, but are priceless in terms of their ability to deliver and facilitate knowledge sharing and collaboration.
- HBM4EU chromates study - Usefulness of measurement of blood chromium levels in the assessment of occupational Cr(VI) exposurePublication . Ndaw, Sophie; Leso, Veruscka; Bousoumah, Radia; Rémy, Aurélie; Bocca, Beatrice; Duca, Radu Corneliu; Godderis, Lode; Hardy, Emilie; Janasik, Beata; van Nieuwenhuyse, An; Pinhal, Hermínia; Poels, Katrien; Porras, Simo P.; Ruggieri, Flavia; Santonen, Tiina; Santos, Sílvia Reis; Scheepers, Paul T.J.; Silva, Maria João; Verdonck, Jelle; Viegas, Susana; Wasowicz, Wojciech; Iavicoli, Ivo; HBM4EU Chromates Study TeamOccupational exposures to hexavalent Chromium (Cr(VI)) can occur in welding, hot working stainless steel processing, chrome plating, spray painting and coating activities. Recently, within the human biomonitoring for Europe initiative (HBM4EU), a study was performed to assess the suitability of different biomarkers to assess the exposure to Cr(VI) in various job tasks. Blood-based biomarkers may prove useful when more specific infor-mation on systemic and intracellular bioavailability is necessary. To this aim, concentrations of Cr in red blood cells (RBC-Cr) and in plasma (P–Cr) were analyzed in 345 Cr(VI) exposed workers and 175 controls to understand how these biomarkers may be affected by variable levels of exposure and job procedures. Compared to controls, significantly higher RBC-Cr levels were observed in bath plating and paint application workers, but not in welders, while all the 3 groups had significantly greater P–Cr concentrations. RBC-Cr and P–Cr in chrome platers showed a high correlation with Cr(VI) in inhalable dust, outside respiratory protective equipment (RPE), while such correlation could not be determined in welders. In platers, the use of RPE had a significant impact on the relationship between blood biomarkers and Cr(VI) in inhalable and respirable dust. Low correlations between P–Cr and RBC-Cr may reflect a difference in kinetics. This study showed that Cr-blood-based biomarkers can provide information on how workplace exposure translates into systemic availability of Cr(III) (extracellular, P–Cr) and Cr(VI) (intracellular, RBC-Cr). Further studies are needed to fully appreciate their use in an occupational health and safety context.
- HBM4EU Chromates Study: Determinants of Exposure to Hexavalent Chromium in Plating, Welding and Other Occupational SettingsPublication . Viegas, Susana; Martins, Carla; Bocca, Beatrice; Bousoumah, Radia; Duca, Radu Corneliu; Galea, Karen S.; Godderis, Lode; Iavicoli, Ivo; Janasik, Beata; Jones, Kate; Leese, Elizabeth; Leso, Veruscka; Ndaw, Sophie; van Nieuwenhuyse, An; Poels, Katrien; Porras, Simo P.; Ruggieri, Flavia; Silva, Maria João; Verdonck, Jelle; Wasowicz, Wojciech; Scheepers, Paul T.J.; Santonen, Tiina; HBM4EU Chromates Study TeamWork-related exposures in industrial processing of chromate (chrome plating, surface treatment and welding) raise concern regarding the health risk of hexavalent chromium (Cr(VI)). In this study, performed under the HBM4EU project, we focused on better understanding the determinants of exposure and recognising how risk management measures (RMMs) contribute to a reduction in exposure. HBM and occupational hygiene data were collected from 399 workers and 203 controls recruited in nine European countries. Urinary total chromium (U-Cr), personal inhalable and respirable dust of Cr and Cr(VI) and Cr from hand wipes were collected. Data on the RMMs were collected by questionnaires. We studied the association between different exposure parameters and the use of RMMs. The relationship between exposure by inhalation and U-Cr in different worker groups was analysed using regression analysis and found a strong association. Automatisation of Cr electroplating dipping explained lower exposure levels in platers. The use of personal protective equipment resulted in lower U-Cr levels in welding, bath plating and painting. An effect of wearing gloves was observed in machining. An effect of local exhaust ventilation and training was observed in welding. Regression analyses showed that in platers, exposure to air level of 5 µg/m3 corresponds to U-Cr level of 7 µg/g creatinine. In welders, the same inhalation exposure resulted in lower U-Cr levels reflecting toxicokinetic differences of different chromium species.
- HBM4EU Chromates Study: Urinary Metabolomics Study of Workers Exposed to Hexavalent ChromiumPublication . Kozłowska, Lucyna; Santonen, Tiina; Duca, Radu Corneliu; Godderis, Lode; Jagiello, Karolina; Janasik, Beata; Van Nieuwenhuyse, An; Poels, Katrien; Puzyn, Tomasz; Scheepers, Paul T.J.; Sijko, Monika; Silva, Maria João; Sosnowska, Anita; Viegas, Susana; Verdonck, Jelle; Wąsowicz, Wojciech; HBM4EU Chromates Study Team; Statistical TeamExposure to hexavalent chromium Cr(VI) may occur in several occupational activities, placing workers in many industries at risk for potential related health outcomes. Untargeted metabolomics was applied to investigate changes in metabolic pathways in response to Cr(VI) exposure. We obtained our data from a study population of 220 male workers with exposure to Cr(VI) and 102 male controls from Belgium, Finland, Poland, Portugal and the Netherlands within the HBM4EU Chromates Study. Urinary metabolite profiles were determined using liquid chromatography mass spectrometry, and differences between post-shift exposed workers and controls were analyzed using principal component analysis. Based on the first two principal components, we observed clustering by industrial chromate application, such as welding, chrome plating, and surface treatment, distinct from controls and not explained by smoking status or alcohol use. The changes in the abundancy of excreted metabolites observed in workers reflect fatty acid and monoamine neurotransmitter metabolism, oxidative modifications of amino acid residues, the excessive formation of abnormal amino acid metabolites and changes in steroid and thyrotropin-releasing hormones. The observed responses could also have resulted from work-related factors other than Cr(VI). Further targeted metabolomics studies are needed to better understand the observed modifications and further explore the suitability of urinary metabolites as early indicators of adverse effects associated with exposure to Cr(VI).
- HBM4EU E-waste study – An untargeted metabolomics approach to characterize metabolic changes during E-waste recyclingPublication . Kozlowska, Lucyna; Viegas, Susana; Scheepers, Paul T.J.; Duca, Radu C.; Godderis, Lode; Martins, Carla; Krzesimir, Ciura; Jagiello, Karolina; Silva, Maria João; Mahiout, Selma; Mārtiņsone, Inese; Matisāne, Linda; van Nieuwenhuyse, An; Puzyn, Tomasz; Sijko-Szpanska, Monika; Verdonck, Jelle; Santonen, Tiina; HBM4EU E-waste Study TeamE-waste contains hazardous chemicals that may be a direct health risk for workers involved in recycling. We conducted an untargeted metabolomics analysis of urine samples collected from male e-waste processing workers to explore metabolic changes associated with chemical exposures in e-waste recycling in Belgium, Finland, Latvia, Luxembourg, the Netherlands, Poland, and Portugal. Questionnaire data and urine samples were obtained from workers involved in the processing of e-waste (sorting, dismantling, shredding, pre-processing, metal, and non-metal processing), as well as from controls with no known occupational exposure. Pre- and post-shift urine samples were collected and analysed using ultrahigh-performance liquid chromatography-mass spectrometry (UPLC-MS). A total of 32 endogenous urinary metabolites were annotated with a Variable Importance in Projection (VIP) above 2, indicating that e-waste recycling is mainly associated with changes in steroid hormone and neurotransmitter metabolism, energy metabolism, bile acid biosynthesis, and inflammation. The highest VIP was observed for dopamine-o-quinone, which is linked to Parkinson’s disease. These and other changes in metabolism in workers employed in the processing of e-waste need further verification in targeted studies.
- HBM4EU e-waste study – Occupational exposure assessment to chromium, cadmium, mercury and lead during e-waste recyclingPublication . Leese, Elizabeth; Verdonck, Jelle; Porras, Simo P.; Airaksinen, Jaakko; Duca, Radu C.; Galea, Karen S.; Godderis, Lode; Janasik, Beata; Mahiout, Selma; Martins, Carla; Mārtiņsone, Inese; Ani, Maria Mirela; van Nieuwenhuyse, An; Scheepers, Paul T.J.; Silva, Maria João; Viegas, Susana; Santonen, Tiina; HBM4EU E-waste Study TeamProcessing of electronic waste (e-waste) causes the release of toxic substances which may lead to occupational exposure. The study aimed to gather information on potential occupational exposure during e-waste recycling, with a focus on biomonitoring of chromium, cadmium, mercury and lead. In eight European countries, 195 workers involved in the recycling of lead batteries, white goods, brown goods and metals and plastics were studied. These workers were compared to 73 controls with no direct involvement of e-waste recycling or other metal processing activities. The samples collected consisted of urine, blood and hair samples, along with personal air samples, hand wipes, settled dust samples and contextual information. Chromium, cadmium, mercury and lead was measured in urine, hair, air samples, hand wipes and settled dust; cadmium and lead in whole blood and chromium in red blood cells. Results showed that lead exposure is of concern, with workers from all five types of e-waste showing exposure, with elevated measurements in all matrices. Internal exposure markers were positively correlated with markers of external exposure, indicating workers are not adequately protected. Exposure to mercury and cadmium was also observed but to a much lesser extent with raised cadmium concentrations in urine and blood of all workers when compared to controls and raised mercury concentrations were found in brown goods workers when compared to controls. This study has highlighted exposure concerns when processing e-waste, particularly for lead across all waste categories studied, indicating a need for improved control measures in this sector.
