Browsing by Author "Samoli, Evangelia"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
- All-cause, cardiovascular, and respiratory mortality and wildfire-related ozone: a multicountry two-stage time series analysisPublication . Chen, Gongbo; Guo, Yuming; Yue, Xu; Xu, Rongbin; Yu,Wenhua; Ye, Tingting; Tong, Shilu; Gasparrini, Antonio; Bell,Michelle L.; Armstrong, Ben; Schwartz, Joel; Jaakkola, Jouni J.K.; Lavigne, Eric; Saldiva, Paulo Hilario Nascimento; Kan, Haidong; Royé, Dominic; Urban, Aleš; Vicedo-Cabrera, Ana Maria; Tobias, Aurelio; Forsberg, Bertil; Sera, Francesco; Lei, Yadong; Abramson, Michael J.; Li, Shanshan; Abrutzky, Rosana; Alahmad, Barrak; Ameling, Caroline; Åström, Christofer; Breitner, Susanne; Carrasco-Escobar, Gabriel; Coêlho, Micheline de Sousa Zanotti Stagliorio; Colistro, Valentina; Correa, Patricia Matus; Dang, Tran Ngoc; de'Donato, Francesca; Dung, Do Van; Entezari, Alireza; Garcia, Samuel David Osorio; Garland, Rebecca M.; Goodman, Patrick; Guo, Yue Leon; Hashizume, Masahiro; Holobaca, Iulian-Horia; Honda, Yasushi; Houthuijs, Danny; Hurtado-Díaz, Magali; Íñiguez, Carmen; Katsouyanni, Klea; Kim, Ho; Kyselý, Jan; Lee, Whanhee; Maasikmets, Marek; Madureira, Joana; Mayvaneh, Fatemeh; Nunes, Baltazar; Orru, Hans; Ortega, Nicol´s Valdés; Overcenco, Ala; Pan, Shih-Chun; Pascal, Mathilde; Ragettli, Martina S.; Rao, Shilpa; Ryti, Niilo R.I.; Samoli, Evangelia; Schneider, Alexandra; Scovronick, Noah; Seposo, Xerxes; Stafoggia, Massimo; Valencia, César De la Cruz; Zanobetti, Antonella; Zeka, Ariana; behalf of the Multi-Country Multi-City Collaborative Research NetworkBackground: Wildfire activity is an important source of tropospheric ozone (O3) pollution. However, no study to date has systematically examined the associations of wildfire-related O3 exposure with mortality globally. Methods: We did a multicountry two-stage time series analysis. From the Multi-City Multi-Country (MCC) Collaborative Research Network, data on daily all-cause, cardiovascular, and respiratory deaths were obtained from 749 locations in 43 countries or areas, representing overlapping periods from Jan 1, 2000, to Dec 31, 2016. We estimated the daily concentration of wildfire-related O3 in study locations using a chemical transport model, and then calibrated and downscaled O3 estimates to a resolution of 0·25° × 0·25° (approximately 28 km2 at the equator). Using a random-effects meta-analysis, we examined the associations of short-term wildfire-related O3 exposure (lag period of 0-2 days) with daily mortality, first at the location level and then pooled at the country, regional, and global levels. Annual excess mortality fraction in each location attributable to wildfire-related O3 was calculated with pooled effect estimates and used to obtain excess mortality fractions at country, regional, and global levels. Findings: Between 2000 and 2016, the highest maximum daily wildfire-related O3 concentrations (≥30 μg/m3) were observed in locations in South America, central America, and southeastern Asia, and the country of South Africa. Across all locations, an increase of 1 μg/m3 in the mean daily concentration of wildfire-related O3 during lag 0-2 days was associated with increases of 0·55% (95% CI 0·29 to 0·80) in daily all-cause mortality, 0·44% (-0·10 to 0·99) in daily cardiovascular mortality, and 0·82% (0·18 to 1·47) in daily respiratory mortality. The associations of daily mortality rates with wildfire-related O3 exposure showed substantial geographical heterogeneity at the country and regional levels. Across all locations, estimated annual excess mortality fractions of 0·58% (95% CI 0·31 to 0·85; 31 606 deaths [95% CI 17 038 to 46 027]) for all-cause mortality, 0·41% (-0·10 to 0·91; 5249 [-1244 to 11 620]) for cardiovascular mortality, and 0·86% (0·18 to 1·51; 4657 [999 to 8206]) for respiratory mortality were attributable to short-term exposure to wildfire-related O3. Interpretation: In this study, we observed an increase in all-cause and respiratory mortality associated with short-term wildfire-related O3 exposure. Effective risk and smoke management strategies should be implemented to protect the public from the impacts of wildfires.
- Differential Mortality Risks Associated With PM2.5 Components: A Multi-Country, Multi-City StudyPublication . Masselot, Pierre; Sera, Francesco; Schneider, Rochelle; Kan, Haidong; Lavigne, Éric; Stafoggia, Massimo; Tobias, Aurelio; Chen, Hong; Burnett, Richard T.; Schwartz, Joel; Zanobetti, Antonella; Bell, Michelle L.; Chen, Bing-Yu; Guo, Yue-Liang Leon; Ragettli, Martina S.; Vicedo-Cabrera, Ana Maria; Åström, Christofer; Forsberg, Bertil; Íñiguez, Carmen; Garland, Rebecca M.; Scovronick, Noah; Madureira, Joana; Nunes, Baltazar; De la Cruz Valencia, César; Hurtado Diaz, Magali; Honda, Yasushi; Hashizume, Masahiro; Ng, Chris Fook Cheng; Samoli, Evangelia; Katsouyanni, Klea; Schneider, Alexandra; Breitner, Susanne; Ryti, Niilo R.I.; Jaakkola, Jouni J.K.; Maasikmets, Marek; Orru, Hans; Guo, Yuming; Valdés Ortega, Nicolás; Matus Correa, Patricia; Tong, Shilu; Gasparrini, AntonioBackground: The association between fine particulate matter (PM2.5) and mortality widely differs between as well as within countries. Differences in PM2.5 composition can play a role in modifying the effect estimates, but there is little evidence about which components have higher impacts on mortality. Methods: We applied a 2-stage analysis on data collected from 210 locations in 16 countries. In the first stage, we estimated location-specific relative risks (RR) for mortality associated with daily total PM2.5 through time series regression analysis. We then pooled these estimates in a meta-regression model that included city-specific logratio-transformed proportions of seven PM2.5 components as well as meta-predictors derived from city-specific socio-economic and environmental indicators. Results: We found associations between RR and several PM2.5 components. Increasing the ammonium (NH4+) proportion from 1% to 22%, while keeping a relative average proportion of other components, increased the RR from 1.0063 (95% confidence interval [95% CI] = 1.0030, 1.0097) to 1.0102 (95% CI = 1.0070, 1.0135). Conversely, an increase in nitrate (NO3-) from 1% to 71% resulted in a reduced RR, from 1.0100 (95% CI = 1.0067, 1.0133) to 1.0037 (95% CI = 0.9998, 1.0077). Differences in composition explained a substantial part of the heterogeneity in PM2.5 risk. Conclusions: These findings contribute to the identification of more hazardous emission sources. Further work is needed to understand the health impacts of PM2.5 components and sources given the overlapping sources and correlations among many components.
- Excess mortality attributed to heat and cold: a health impact assessment study in 854 cities in EuropePublication . Masselot, Pierre; Mistry, Malcolm; Vanoli, Jacopo; Schneider, Rochelle; Iungman, Tamara; Garcia-Leon, David; Ciscar, Juan-Carlos; Feyen, Luc; Orru, Hans; Urban, Aleš; Breitner, Susanne; Huber, Veronika; Schneider, Alexandra; Samoli, Evangelia; Stafoggia, Massimo; de’Donato, Francesca; Rao, Shilpa; Armstrong, Ben; Nieuwenhuijsen, Mark; Vicedo-Cabrera, Ana Maria; Gasparrini, Antonio; Achilleos, Souzana; Kyselý, Jan; Indermitte, Ene; Jaakkola, Jouni J.K.; Ryti, Niilo; Pascal, Mathilde; Katsouyanni, Klea; Analitis, Antonis; Goodman, Patrick; Zeka, Ariana; Michelozzi, Paola; Houthuijs, Danny; Ameling, Caroline; Silva, Susana; Madureira, Joana; Holobaca, Iulian-Horia; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Surname, First name; Zafeiratou, Sofia; Vazquez Fernandez, Liliana; Monteiro, Ana; Rai, Masna; Zhang, Siqi; Aunan, KristinBackground: Heat and cold are established environmental risk factors for human health. However, mapping the related health burden is a difficult task due to the complexity of the associations and the differences in vulnerability and demographic distributions. In this study, we did a comprehensive mortality impact assessment due to heat and cold in European urban areas, considering geographical differences and age-specific risks. Methods: We included urban areas across Europe between Jan 1, 2000, and Dec 12, 2019, using the Urban Audit dataset of Eurostat and adults aged 20 years and older living in these areas. Data were extracted from Eurostat, the Multi-country Multi-city Collaborative Research Network, Moderate Resolution Imaging Spectroradiometer, and Copernicus. We applied a three-stage method to estimate risks of temperature continuously across the age and space dimensions, identifying patterns of vulnerability on the basis of city-specific characteristics and demographic structures. These risks were used to derive minimum mortality temperatures and related percentiles and raw and standardised excess mortality rates for heat and cold aggregated at various geographical levels. Findings: Across the 854 urban areas in Europe, we estimated an annual excess of 203 620 (empirical 95% CI 180 882-224 613) deaths attributed to cold and 20 173 (17 261-22 934) attributed to heat. These corresponded to age-standardised rates of 129 (empirical 95% CI 114-142) and 13 (11-14) deaths per 100 000 person-years. Results differed across Europe and age groups, with the highest effects in eastern European cities for both cold and heat. Interpretation: Maps of mortality risks and excess deaths indicate geographical differences, such as a north-south gradient and increased vulnerability in eastern Europe, as well as local variations due to urban characteristics. The modelling framework and results are crucial for the design of national and local health and climate policies and for projecting the effects of cold and heat under future climatic and socioeconomic scenarios.
- Heat-related cardiorespiratory mortality: Effect modification by air pollution across 482 cities from 24 countriesPublication . Rai, Masna; Stafoggia, Massimo; de'Donato, Francesca; Scortichini, Matteo; Zafeiratou, Sofia; Vazquez Fernandez, Liliana; Zhang, Siqi; Katsouyanni, Klea; Samoli, Evangelia; Rao, Shilpa; Lavigne, Eric; Guo, Yuming; Kan, Haidong; Osorio, Samuel; Kyselý, Jan; Urban, Aleš; Orru, Hans; Maasikmets, Marek; Jaakkola, Jouni J.K.; Ryti, Niilo; Pascal, Mathilde; Hashizume, Masahiro; Fook Sheng Ng, Chris; Alahmad, Barrak; Hurtado Diaz, Magali; De la Cruz Valencia, César; Nunes, Baltazar; Madureira, Joana; Scovronick, Noah; Garland, Rebecca M.; Kim, Ho; Lee, Whanhee; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Maria Vicedo-Cabrera, Ana; Ragettli, Martina S.; Leon Guo, Yue-Liang; Pan, Shih-Chun; Li, Shanshan; Gasparrini, Antonio; Sera, Francesco; Masselot, Pierre; Schwartz, Joel; Zanobetti, Antonella; Bell, Michelle L.; Schneider, Alexandra; Breitner, SusanneHighlights: - Heat effect modification by air pollution on cardiovascular and respiratory mortality was investigated across 482 cities.- Heat effect was seen to be significantly modified by air pollutants PM10, PM2.5, O3, and NO2. -This study is the most extensive research to date investigating the heat effect modification on cardiovascular and respiratory mortality. - This is the first-ever study to deeply investigate effect modifications by air pollutants such as PM2.5 and NO2.
- Joint effect of heat and air pollution on mortality in 620 cities of 36 countriesPublication . Stafoggia, Massimo; Michelozzi, Paola; Schneider, Alexandra; Armstrong, Ben; Scortichini, Matteo; Rai, Masna; Achilleos, Souzana; Alahmad, Barrak; Analitis, Antonis; Åström, Christofer; Bell, Michelle L.; Calleja, Neville; Krage Carlsen, Hanne; Carrasco, Gabriel; Paul Cauchi, John; DSZS Coelho, Micheline; Correa, Patricia M.; Diaz, Magali H.; Entezari, Alireza; Forsberg, Bertil; Garland, Rebecca M.; Leon Guo, Yue; Guo, Yuming; Hashizume, Masahiro; Holobaca, Iulian H.; Íñiguez, Carmen; Jaakkola, Jouni J.K.; Kan, Haidong; Katsouyanni, Klea; Kim, Ho; Kyselý, Jan; Lavigne, Eric; Lee, Whanhee; Li, Shanshan; Maasikmets, Marek; Madureira, Joana; Mayvaneh, Fatemeh; Fook Sheng Ng, Chris; Nunes, Baltazar; Orru, Hans; V Ortega, Nicolás; Osorio, Samuel; Palomares, Alfonso D.L.; Pan, Shih-Chun; Pascal, Mathilde; Ragettli, Martina S; Rao, Shilpa; Raz, Raanan; Roye, Dominic; Ryti, Niilo; HN Saldiva, Paulo; Samoli, Evangelia; Schwartz, Joel; Scovronick, Noah; Sera, Francesco; Tobias, Aurelio; Tong, Shilu; DLC Valencia, César; Maria Vicedo-Cabrera, Ana; Urban, Aleš; Gasparrini, Antonio; Breitner, Susanne; de' Donato, Francesca K.Background: The epidemiological evidence on the interaction between heat and ambient air pollution on mortality is still inconsistent. Objectives: To investigate the interaction between heat and ambient air pollution on daily mortality in a large dataset of 620 cities from 36 countries. Methods: We used daily data on all-cause mortality, air temperature, particulate matter ≤ 10 μm (PM10), PM ≤ 2.5 μm (PM2.5), nitrogen dioxide (NO2), and ozone (O3) from 620 cities in 36 countries in the period 1995-2020. We restricted the analysis to the six consecutive warmest months in each city. City-specific data were analysed with over-dispersed Poisson regression models, followed by a multilevel random-effects meta-analysis. The joint association between air temperature and air pollutants was modelled with product terms between non-linear functions for air temperature and linear functions for air pollutants. Results: We analyzed 22,630,598 deaths. An increase in mean temperature from the 75th to the 99th percentile of city-specific distributions was associated with an average 8.9 % (95 % confidence interval: 7.1 %, 10.7 %) mortality increment, ranging between 5.3 % (3.8 %, 6.9 %) and 12.8 % (8.7 %, 17.0 %), when daily PM10 was equal to 10 or 90 μg/m3, respectively. Corresponding estimates when daily O3 concentrations were 40 or 160 μg/m3 were 2.9 % (1.1 %, 4.7 %) and 12.5 % (6.9 %, 18.5 %), respectively. Similarly, a 10 μg/m3 increment in PM10 was associated with a 0.54 % (0.10 %, 0.98 %) and 1.21 % (0.69 %, 1.72 %) increase in mortality when daily air temperature was set to the 1st and 99th city-specific percentiles, respectively. Corresponding mortality estimate for O3 across these temperature percentiles were 0.00 % (-0.44 %, 0.44 %) and 0.53 % (0.38 %, 0.68 %). Similar effect modification results, although slightly weaker, were found for PM2.5 and NO2. Conclusions: Suggestive evidence of effect modification between air temperature and air pollutants on mortality during the warm period was found in a global dataset of 620 cities.
- Mortality risk attributable to wildfire-related PM2·5 pollution: a global time series study in 749 locationsPublication . Chen, Gongbo; Guo, Yuming; Yue, Xu; Tong, Shilu; Gasparrini, Antonio; Bell, Michelle L.; Armstrong, Ben; Schwartz, Joel; Jaakkola, Jouni J.K.; Zanobetti, Antonella; Lavigne, Eric; Nascimento Saldiva, Paulo Hilario; Kan, Haidong; Royé, Dominic; Milojevic, Ai; Overcenco, Ala; Urban, Aleš; Schneider, Alexandra; Entezari, Alireza; Vicedo-Cabrera, Ana Maria; Zeka, Ariana; Tobias, Aurelio; Nunes, Baltazar; Alahmad, Barrak; Forsberg, Bertil; Pan, Shih-Chun; Íñiguez, Carmen; Ameling, Caroline; De la Cruz Valencia, César; Åström, Christofer; Houthuijs, Danny; Van Dung, Do; Samoli, Evangelia; Mayvaneh, Fatemeh; Sera, Francesco; Carrasco-Escobar, Gabriel; Lei, Yadong; Orru, Hans; Kim, Ho; Holobaca, Iulian-Horia; Kyselý, Jan; Teixeira, João Paulo; Madureira, Joana; Katsouyanni, Klea; Hurtado-Díaz, Magali; Maasikmets, Marek; Ragettli, Martina S.; Hashizume, Masahiro; Stafoggia, Massimo; Pascal, Mathilde; Scortichini, Matteo; de Sousa Zanotti Stagliorio Coêlho, Micheline; Valdés Ortega, Nicolás; Ryti, Niilo R.I.; Scovronick, Noah; Matus, Patricia; Goodman, Patrick; Garland, Rebecca M.; Abrutzky, Rosana; Garcia, Samuel Osorio; Rao, Shilpa; Fratianni, Simona; Dang, Tran Ngoc; Colistro, Valentina; Huber, Veronika; Lee, Whanhee; Seposo, Xerxes; Honda, Yasushi; Guo, Yue Leon; Ye, Tingting; Yu, Wenhua; Abramson, Michael J.; Samet, Jonathan M.; Li, ShanshanBackground: Many regions of the world are now facing more frequent and unprecedentedly large wildfires. However, the association between wildfire-related PM2·5 and mortality has not been well characterised. We aimed to comprehensively assess the association between short-term exposure to wildfire-related PM2·5 and mortality across various regions of the world. Methods: For this time series study, data on daily counts of deaths for all causes, cardiovascular causes, and respiratory causes were collected from 749 cities in 43 countries and regions during 2000-16. Daily concentrations of wildfire-related PM2·5 were estimated using the three-dimensional chemical transport model GEOS-Chem at a 0·25° × 0·25° resolution. The association between wildfire-related PM2·5 exposure and mortality was examined using a quasi-Poisson time series model in each city considering both the current-day and lag effects, and the effect estimates were then pooled using a random-effects meta-analysis. Based on these pooled effect estimates, the population attributable fraction and relative risk (RR) of annual mortality due to acute wildfire-related PM2·5 exposure was calculated. Findings: 65·6 million all-cause deaths, 15·1 million cardiovascular deaths, and 6·8 million respiratory deaths were included in our analyses. The pooled RRs of mortality associated with each 10 μg/m3 increase in the 3-day moving average (lag 0-2 days) of wildfire-related PM2·5 exposure were 1·019 (95% CI 1·016-1·022) for all-cause mortality, 1·017 (1·012-1·021) for cardiovascular mortality, and 1·019 (1·013-1·025) for respiratory mortality. Overall, 0·62% (95% CI 0·48-0·75) of all-cause deaths, 0·55% (0·43-0·67) of cardiovascular deaths, and 0·64% (0·50-0·78) of respiratory deaths were annually attributable to the acute impacts of wildfire-related PM2·5 exposure during the study period. Interpretation: Short-term exposure to wildfire-related PM2·5 was associated with increased risk of mortality. Urgent action is needed to reduce health risks from the increasing wildfires.
- Ozone-related acute excess mortality projected to increase in the absence of climate and air quality controls consistent with the Paris AgreementPublication . Domingo, Nina G.G.; Fiore, Arlene M.; Lamarque, Jean-Francois; Kinney, Patrick L.; Jiang, Leiwen; Gasparrini, Antonio; Breitner, Susanne; Lavigne, Eric; Madureira, Joana; Masselot, Pierre; Silva, Susana das Neves Pereira da; Sheng Ng, Chris Fook; Kyselý, Jan; Guo, Yuming; Tong, Shilu; Kan, Haidong; Urban, Aleš; Orru, Hans; Maasikmets, Marek; Pascal, Mathilde; Katsouyanni, Klea; Samoli, Evangelia; Scortichini, Matteo; Stafoggia, Massimo; Hashizume, Masahiro; Alahmad, Barrak; Diaz, Magali Hurtado; De la Cruz Valencia, César; Scovronick, Noah; Garland, Rebecca M.; Kim, Ho; Lee, Whanhee; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Guo, Yue Leon; Pan, Shih-Chun; Colistro, Valentina; Bell, Michelle; Zanobetti, Antonella; Schwartz, Joel; Schneider, Alexandra; Vicedo-Cabrera, Ana M.; Chen, KaiShort-term exposure to ground-level ozone in cities is associated with increased mortality and is expected to worsen with climate and emission changes. However, no study has yet comprehensively assessed future ozone-related acute mortality across diverse geographic areas, various climate scenarios, and using CMIP6 multi-model ensembles, limiting our knowledge on future changes in global ozone-related acute mortality and our ability to design targeted health policies. Here, we combine CMIP6 simulations and epidemiological data from 406 cities in 20 countries or regions. We find that ozone-related deaths in 406 cities will increase by 45 to 6,200 deaths/year between 2010 and 2014 and between 2050 and 2054, with attributable fractions increasing in all climate scenarios (from 0.17% to 0.22% total deaths), except the single scenario consistent with the Paris Climate Agreement (declines from 0.17% to 0.15% total deaths). These findings stress the need for more stringent air quality regulations, as current standards in many countries are inadequate.
- Short term association between ozone and mortality: global two stage time series study in 406 locations in 20 countriesPublication . Vicedo-Cabrera, Ana M.; Sera, Francesco; Liu, Cong; Armstrong, Ben; Milojevic, A.i.; Guo, Yuming; Tong, Shilu; Lavigne, Eric; Kyselý, Jan; Urban, Aleš; Orru, Hans; Indermitte, Ene; Pascal, Mathilde; Huber, Veronika; Schneider, Alexandra; Katsouyanni, Klea; Samoli, Evangelia; Stafoggia, Massimo; Scortichini, Matteo; Hashizume, Masahiro; Honda, Yasushi; Ng, Chris Fook Sheng; Hurtado-Diaz, Magali; Cruz, Julio; Silva, Susana; Madureira, Joana; Scovronick, Noah; Garland, Rebecca M.; Kim, Ho; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Röösli, Martin; Guo, Yue-Liang Leon; Chen, Bing-Yu; Zanobetti, Antonella; Schwartz, Joel; Bell, Michelle L.; Kan, Haidong; Gasparrini, AntonioObjective: To assess short term mortality risks and excess mortality associated with exposure to ozone in several cities worldwide. Design: Two stage time series analysis. Setting: 406 cities in 20 countries, with overlapping periods between 1985 and 2015, collected from the database of Multi-City Multi-Country Collaborative Research Network. Population: Deaths for all causes or for external causes only registered in each city within the study period. MAIN OUTCOME MEASURES: Daily total mortality (all or non-external causes only). Results: A total of 45 165 171 deaths were analysed in the 406 cities. On average, a 10 µg/m3 increase in ozone during the current and previous day was associated with an overall relative risk of mortality of 1.0018 (95% confidence interval 1.0012 to 1.0024). Some heterogeneity was found across countries, with estimates ranging from greater than 1.0020 in the United Kingdom, South Africa, Estonia, and Canada to less than 1.0008 in Mexico and Spain. Short term excess mortality in association with exposure to ozone higher than maximum background levels (70 µg/m3) was 0.26% (95% confidence interval 0.24% to 0.28%), corresponding to 8203 annual excess deaths (95% confidence interval 3525 to 12 840) across the 406 cities studied. The excess remained at 0.20% (0.18% to 0.22%) when restricting to days above the WHO guideline (100 µg/m3), corresponding to 6262 annual excess deaths (1413 to 11 065). Above more lenient thresholds for air quality standards in Europe, America, and China, excess mortality was 0.14%, 0.09%, and 0.05%, respectively. Conclusions: Results suggest that ozone related mortality could be potentially reduced under stricter air quality standards. These findings have relevance for the implementation of efficient clean air interventions and mitigation strategies designed within national and international climate policies.
- Temporal variations in the short-term effects of ambient air pollution on cardiovascular and respiratory mortality: a pooled analysis of 380 urban areas over a 22-year periodPublication . Schwarz, Maximilian; Peters, Annette; Stafoggia, Massimo; de'Donato, Francesca; Sera, Francesco; Bell, Michelle L; Guo, Yuming; Honda, Yasushi; Huber, Veronika; Jaakkola, Jouni J.K.; Urban, Aleš; Vicedo-Cabrera, Ana Maria; Masselot, Pierre; Lavigne, Eric; Achilleos, Souzana; Kyselý, Jan; Samoli, Evangelia; Hashizume, Masahiro; Fook Sheng Ng, Chris; Silva, Susana; Madureira, Joana; Garland, Rebecca M.; Tobias, Aurelio; Armstrong, Ben; Schwartz, Joel; Gasparrini, Antonio; Schneider, Alexandra; Breitner, Susanne; Kan, Haidong; Osorio, Samuel; Orru, Hans; Indermitte, Ene; Maasikmets, Marek; Ryti, Niilo; Pascal, Mathilde; Katsouyanni, Klea; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Kim, Yoonhee; Alahmad, Barrak; Hurtado Diaz, Magali; Félix Arellano, Eunice Elizabeth; Rao, Shilpa; Diz-Lois Palomares, Alfonso; Scovronick, Noah; Acquaotta, Fiorella; Kim, Ho; Lee, Whanhee; Íñiguez, Carmen; Forsberg, Bertil; Ragettli, Martina S.; Guo, Yue Leon; Pan, Shih-Chun; Li, Shanshan; Zanobetti, AntonellaBackground: Ambient air pollution, including particulate matter (such as PM10 and PM2·5) and nitrogen dioxide (NO2), has been linked to increases in mortality. Whether populations' vulnerability to these pollutants has changed over time is unclear, and studies on this topic do not include multicountry analysis. We evaluated whether changes in exposure to air pollutants were associated with changes in mortality effect estimates over time. Methods: We extracted cause-specific mortality and air pollution data collected between 1995 and 2016 from the Multi-Country Multi-City (MCC) Collaborative Research Network database. We applied a two-stage approach to analyse the short-term effects of NO2, PM10, and PM2·5 on cause-specific mortality using city-specific time series regression analyses and multilevel random-effects meta-analysis. We assessed changes over time using a longitudinal meta-regression with time as a linear fixed term and explored potential sources of heterogeneity and two-pollutant models. Findings: Over 21·6 million cardiovascular and 7·7 million respiratory deaths in 380 cities across 24 countries over the study period were included in the analysis. All three air pollutants showed decreasing concentrations over time. The pooled results suggested no significant temporal change in the effect estimates per unit exposure of PM10, PM2·5, or NO2 and mortality. However, the risk of cardiovascular mortality increased from 0·37% (95% CI -0·05 to 0·80) in 1998 to 0·85% (0·55 to 1·16) in 2012 with a 10 μg/m3 increase in PM2·5. Two-pollutant models generally showed similar results to single-pollutant models for PM fractions and indicated temporal differences for NO2. Interpretation: Although air pollution levels decreased during the study period, the effect sizes per unit increase in air pollution concentration have not changed. This observation might be due to the composition, toxicity, and sources of air pollution, as well as other factors, such as socioeconomic determinants or changes in population distribution and susceptibility.
