Browsing by Author "Galea, Karen S."
Now showing 1 - 10 of 16
Results Per Page
Sort Options
- Assessment of occupational exposure to hexavalent chromium – recommendations from HBM4EU chromate studyPublication . Santonen, Tiina; Bocca, Beatrice; Bousoumah, Radia; Duca, Radu Corneliu; Galea, Karen S.; Godderis, Lode; Göen, Thomas; Hardy, Emilie; Iavicoli, Ivo; Janasik, Beata; Jones, Kate; Leese, Elizabeth; Leso, Veruscka; Louro, Henriqueta; Majery, Nicole; Ndaw, Sophie; Pinhal, Hermínia; Porras, Simo P.; Scheepers, Paul T.J.; Sepai, Ovnair; Silva, Maria João; van Nieuwenhuyse, An; Verdonck, Jelle; Viegas, Susana; Wasowicz, WojciechIntroduction: Hexavalent chromium (Cr(VI)) is an important occupational carcinogen. In addition to air monitoring biomonitoring is commonly applied to monitor exposure to Cr(VI). Within the EU biomonitoring initiative, HBM4EU, we explored the applicability of different biomonitoring methods in the assessment of occupational exposure to Cr(VI) in welding and surface treatment activities. Materials and Methods: A multi-center cross-sectional study was performed in Belgium, Finland, France, Italy, Poland, Portugal, the Netherlands, Luxembourg and United Kingdom. Harmonized procedures were used to collect biological and industrial hygiene samples. Contextual information was collected using questionnaires. Altogether 602 exposed workers and controls were included in the study. Exposure biomarkers studied included urinary, red blood cell (RBC) and plasma Cr, and exhaled breath condensate (EBC) Cr(VI)/Cr(III). In addition, number of effect biomarkers were studied. Results: All exposure markers showed highest exposure levels among chrome plating workers. U-Cr showed a good correlation with air Cr(VI) in bath platers and welders. Observed low correlations between different exposure biomarkers suggest that these approaches are not interchangeable but rather complementary. Conclusions: U-Cr showed its value as the first approach for the assessment of internal exposure to Cr(VI). We recommend pre- and post-shift samples for low exposure levels. RBC/P-Cr and EBC-Cr(VI)/Cr(III) provide additional information when more specific information on exposure is needed. The current exposure levels require analytical methods with high sensitivity.
- Developing human biomonitoring as a 21st century toolbox within the European exposure science strategy 2020-2030Publication . Zare Jeddi, Maryam; Hopf, Nancy B.; Louro, Henriqueta; Viegas, Susana; Galea, Karen S.; Pasanen-Kase, Robert; Santonen, Tiina; Mustieles, Vicente; Fernandez, Mariana F.; Verhagen, Hans; Bopp, Stephanie K.; Antignac, Jean Philippe; David, Arthur; Mol, Hans; Barouki, Robert; Audouze, Karine; Duca, Radu-Corneliu; Fantke, Peter; Scheepers, Paul; Ghosh, Manosij; Van Nieuwenhuyse, An; Lobo Vicente, Joana; Trier, Xenia; Rambaud, Loïc; Fillol, Clémence; Denys, Sebastien; Conrad, André; Kolossa-Gehring, Marike; Paini, Alicia; Arnot, Jon; Schulze, Florian; Jones, Kate; Sepai, Ovnair; Ali, Imran; Brennan, Lorraine; Benfenati, Emilio; Cubadda, Francesco; Mantovani, Alberto; Bartonova, Alena; Connolly, Alison; Slobodnik, Jaroslav; Bruinen de Bruin, Yuri; van Klaveren, Jacob; Palmen, Nicole; Dirven, Hubert; Husøy, Trine; Thomsen, Cathrine; Virgolino, Ana; Röösli, Martin; Gant, Tim; von Goetz, Natalie; Bessems, JosHuman biomonitoring (HBM) is a crucial approach for exposure assessment, as emphasised in the European Commission’s Chemicals Strategy for Sustainability (CSS). HBM can help to improve chemical policies in five major key areas: (1) assessing internal and aggregate exposure in different target populations; 2) assessing exposure to chemicals across life stages; (3) assessing combined exposure to multiple chemicals (mixtures); (4) bridging regulatory silos on aggregate exposure; and (5) enhancing the effectiveness of risk management measures. In this strategy paper we propose a vision and a strategy for the use of HBM in chemical regulations and public health policy in Europe and beyond. We outline six strategic objectives and a roadmap to further strengthen HBM approaches and increase their implementation in the regulatory risk assessment of chemicals to enhance our understanding of exposure and health impacts, enabling timely and targeted policy interventions and risk management. These strategic objectives are: 1) further development of sampling strategies and sample preparation; 2) further development of chemical-analytical HBM methods; 3) improving harmonisation throughout the HBM research life cycle; 4) further development of quality control / quality assurance throughout the HBM research life cycle; 5) obtain sustained funding and reinforcement by legislation; and 6) extend target-specific communication with scientists, policymakers, citizens and other stakeholders. HBM approaches are essential in risk assessment to address scientific, regulatory and societal challenges. HBM requires full and strong support from the scientific and regulatory domain to reach its full potential in public and occupational health assessment and in regulatory decision-making.
- FAIR environmental and health registry (FAIREHR)- supporting the science to policy interface and life science research, development and innovationPublication . Zare Jeddi, Maryam; Galea, Karen S.; Viegas, Susana; Fantke, Peter; Louro, Henriqueta; Theunis, Jan; Govarts, Eva; Denys, Sébastien; Fillol, Clémence; Rambaud, Loïc; Kolossa-Gehring, Marike; Santonen, Tiina; van der Voet, Hilko; Ghosh, Manosij; Costa, Carla; Teixeira, João Paulo; Verhagen, Hans; Duca, Radu-Corneliu; Van Nieuwenhuyse, An; Jones, Kate; Sams, Craig; Sepai, Ovnair; Tranfo, Giovanna; Bakker, Martine; Palmen, Nicole; van Klaveren, Jacob; Scheepers, Paul T. J.; Paini, Alicia; Canova, Cristina; von Goetz, Natalie; Katsonouri, Andromachi; Karakitsios, Spyros; Sarigiannis, Dimosthenis A.; Bessems, Jos; Machera, Kyriaki; Harrad, Stuart; Hopf, Nancy B.The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the 'Europe Regional Chapter of the International Society of Exposure Science' (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.
- Guidance on minimum information requirements (MIR) from designing to reporting human biomonitoring (HBM)Publication . Jeddi, Maryam Zare; Galea, Karen S.; Ashley-Martin, Jillian; Nassif, Julianne; Pollock, Tyler; Poddalgoda, Devika; Kasiotis, Konstantinos M.; Esteban-López, Marta; Chung, Ming Kei; Kil, Jihyon; Jones, Kate; Covaci, Adrian; Ait Bamai, Yu; Fernandez, Mariana F.; Pasanen Kase, Robert; Louro, Henriqueta; Silva, Maria J.; Santonen, Tiina; Katsonouri, Andromachi; Castaño, Argelia; Quirós-Alcalá, Lesliam; Argelia Castaño; Lesliam Quirós-Alcalá; Lin, Elizabeth Ziying; Pollitt, Krystal; Ana Virgolino; Virgolino, Ana; Scheepers, Paul T.J; Mustieles, Vicente; Cañas-Portilla, Ana Isabel; Viegas, Susana; von Goetz, Natalie; Sepai, Ovnair; Bird, Emily; Gӧen, Thomas; Fustinoni, Silvia; Ghosh, Manosij; Dirven, Hubert; Kwon, Jung-Hwan; Carignan, Courtney; Mizuno, Yuki; Ito, Yuki; Xia, Yankai; Shoji F. Nakayama; Nakayama, Shoji F.; Makris, Konstantinos C.; Parsons, Patrick J.; Gonzales, Melissa; Bader, Michael; Dusinska, Maria; Menouni, Aziza; Duca, Radu Corneliu; Chbihi, Kaoutar; El Jaafari, Samir; Godderis, Lode; van Nieuwenhuyse, An; Qureshi, Asif; Ali, Imran; Costa Trindade, Carla; Teixeira, Joao Paulo; Bartonova, Alena; Tranfo, Giovanna; Audouze, Karine; Verpaele, Steven; LaKind, Judy; Mol, Hans; Bessems, Jos; Magagna, Barbara; Nasution Waras, Maisarah; Connolly, Alison; Nascarella, Marc; Yang, Wonho; Huang, Po-Chin; Heussen, Henri; Goksel, Ozlem; Yunesian, Masud; Yeung, Leo W.Y.; Souza, Gustavo; Vekic, Ana Maria; Haynes, Erin N.; Hopf, Nancy B.Human biomonitoring (HBM) provides an integrated chemical exposures assessment considering all routes and sources of exposure. The accurate interpretation and comparability of biomarkers of exposure and effect depend on harmonized, quality-assured sampling, processing, and analysis. Currently, the lack of broadly accepted guidance on minimum information required for collecting and reporting HBM data, hinders comparability between studies. Furthermore, it prevents HBM from reaching its full potential as a reliable approach for assessing and managing the risks of human exposure to chemicals. The European Chapter of the International Society of Exposure Science HBM Working Group (ISES Europe HBM working group) has established a global human biomonitoring community network (HBM Global Network) to develop a guidance to define the minimum information to be collected and reported in HBM, called the “Minimum Information Requirements for Human Biomonitoring (MIR-HBM)”. This work builds on previous efforts to harmonize HBM worldwide. The MIR-HBM guidance covers all phases of HBM from the design phase to the effective communication of results. By carefully defining MIR for all phases, researchers and health professionals can make their HBM studies and programs are robust, reproducible, and meaningful. Acceptance and implementation of MIR-HBM Guidelines in both the general population and occupational fields would improve the interpretability and regulatory utility of HBM data. While implementation challenges remain—such as varying local capacities, and ethical and legal differences at the national levels, this initiative represents an important step toward harmonizing HBM practice and supports an ongoing dialogue among policymakers, legal experts, and scientists to effectively address these challenges. Leveraging the data and insights from HBM, policymakers can develop more effective strategies to protect public health and ensure safer working environments.
- HBM4EU chromates study - Overall results and recommendations for the biomonitoring of occupational exposure to hexavalent chromiumPublication . Santonen, Tiina; Porras, Simo P.; Bocca, Beatrice; Bousoumah, Radia; Duca, Radu Corneliu; Galea, Karen S.; Godderis, Lode; Göen, Thomas; Hardy, Emilie; Iavicoli, Ivo; Janasik, Beata; Jones, Kate; Leese, Elizabeth; Leso, Veruscka; Louro, Henriqueta; Majery, Nicole; Ndaw, Sophie; Pinhal, Hermínia; Ruggieri, Flavia; Silva, Maria João; van Nieuwenhuyse, An; Verdonck, Jelle; Viegas, Susana; Wasowicz, Wojciech; Sepai, Ovnair; Scheepers, Paul T.J.; Aimonen, Kukka; Antoine, Guillaume; Anzion, Rob; Burgart, Manuella; Castaño, Argelia; Cattaneo, Andrea; Cavallo, Domenico Maria; De Palma, Giuseppe; Denis, Flavien; Gambelunghe, Angela; Gomes, Bruno; Hanser, Ogier; Helenius, Riikka; Ladeira, Carina; López, Marta Esteban; Lovreglio, Piero; Marsan, Philippe; Melczer, Mathieu; Nogueira, Ana; Pletea, Elisabeta; Poels, Katrien; Remes, Jouko; Ribeiro, Edna; Santos, Sílvia Reis; Schaefers, Françoise; Spankie, Sally; Spoek, Robert; Rizki, Mohamed; Rousset, Davy; van Dael, Maurice; Veijalainen, Henna; HBM4EU chromates study teamExposure to hexavalent chromium [Cr(VI)] may occur in several occupational activities, e.g., welding, Cr(VI) electroplating and other surface treatment processes. The aim of this study was to provide EU relevant data on occupational Cr(VI) exposure to support the regulatory risk assessment and decision-making. In addition, the capability and validity of different biomarkers for the assessment of Cr(VI) exposure were evaluated. The study involved nine European countries and involved 399 workers in different industry sectors with exposures to Cr(VI) such as welding, bath plating, applying or removing paint and other tasks. We also studied 203 controls to establish a background in workers with no direct exposure to Cr(VI). We applied a cross-sectional study design and used chromium in urine as the primary biomonitoring method for Cr(VI) exposure. Additionally, we studied the use of red blood cells (RBC) and exhaled breath condensate (EBC) for biomonitoring of exposure to Cr(VI). Personal measurements were used to study exposure to inhalable and respirable Cr(VI) by personal air sampling. Dermal exposure was studied by taking hand wipe samples. The highest internal exposures were observed in the use of Cr(VI) in electrolytic bath plating. In stainless steel welding the internal Cr exposure was clearly lower when compared to plating activities. We observed a high correlation between chromium urinary levels and air Cr(VI) or dermal total Cr exposure. Urinary chromium showed its value as a first approach for the assessment of total, internal exposure. Correlations between urinary chromium and Cr(VI) in EBC and Cr in RBC were low, probably due to differences in kinetics and indicating that these biomonitoring approaches may not be interchangeable but rather complementary. This study showed that occupational biomonitoring studies can be conducted successfully by multi-national collaboration and provide relevant information to support policy actions aiming to reduce occupational exposure to chemicals.
- HBM4EU chromates study - Reflection and lessons learnt from designing and undertaking a collaborative European biomonitoring study on occupational exposure to hexavalent chromiumPublication . Galea, Karen S.; Porras, Simo P.; Viegas, Susana; Bocca, Beatrice; Bousoumah, Radia; Duca, Radu Corneliu; Godderis, Lode; Iavicoli, Ivo; Janasik, Beata; Jones, Kate; Knudsen, Lisbeth E.; Leese, Elizabeth; Leso, Veruscka; Louro, Henriqueta; Ndaw, Sophie; Ruggieri, Flavia; Sepai, Ovnair; Scheepers, Paul T.J.; Silva, Maria J.; Wasowicz, Wojciech; Santonen, TiinaThe EU human biomonitoring initiative, HBM4EU, aims to co-ordinate and advance human biomonitoring (HBM) across Europe. As part of HBM4EU, we presented a protocol for a multicentre study to characterize occupational exposure to hexavalent chromium (Cr(VI)) in nine European countries (HBM4EU chromates study). This study intended to collect data on current occupational exposure and to test new indicators for chromium (Cr) biomonitoring (Cr(VI) in exhaled breath condensate and Cr in red blood cells), in addition to traditional urinary total Cr analyses. Also, data from occupational hygiene samples and biomarkers of early biological effects, including genetic and epigenetic effects, was obtained, complementing the biomonitoring information. Data collection and analysis was completed, with the project findings being made separately available. As HBM4EU prepares to embark on further European wide biomonitoring studies, we considered it important to reflect on the experiences gained through our harmonised approach. Several practical aspects are highlighted for improvement in future studies, e.g., more thorough/earlier training on the implementation of standard operating procedures for field researchers, training on the use of the data entry template, as well as improved company communications. The HBM4EU chromates study team considered that the study had successfully demonstrated the feasibility of conducting a harmonised multicentre investigation able to achieve the research aims and objectives. This was largely attributable to the engaged multidisciplinary network, committed to deliver clearly understood goals. Such networks take time and investment to develop, but are priceless in terms of their ability to deliver and facilitate knowledge sharing and collaboration.
- HBM4EU Chromates Study: Determinants of Exposure to Hexavalent Chromium in Plating, Welding and Other Occupational SettingsPublication . Viegas, Susana; Martins, Carla; Bocca, Beatrice; Bousoumah, Radia; Duca, Radu Corneliu; Galea, Karen S.; Godderis, Lode; Iavicoli, Ivo; Janasik, Beata; Jones, Kate; Leese, Elizabeth; Leso, Veruscka; Ndaw, Sophie; van Nieuwenhuyse, An; Poels, Katrien; Porras, Simo P.; Ruggieri, Flavia; Silva, Maria João; Verdonck, Jelle; Wasowicz, Wojciech; Scheepers, Paul T.J.; Santonen, Tiina; HBM4EU Chromates Study TeamWork-related exposures in industrial processing of chromate (chrome plating, surface treatment and welding) raise concern regarding the health risk of hexavalent chromium (Cr(VI)). In this study, performed under the HBM4EU project, we focused on better understanding the determinants of exposure and recognising how risk management measures (RMMs) contribute to a reduction in exposure. HBM and occupational hygiene data were collected from 399 workers and 203 controls recruited in nine European countries. Urinary total chromium (U-Cr), personal inhalable and respirable dust of Cr and Cr(VI) and Cr from hand wipes were collected. Data on the RMMs were collected by questionnaires. We studied the association between different exposure parameters and the use of RMMs. The relationship between exposure by inhalation and U-Cr in different worker groups was analysed using regression analysis and found a strong association. Automatisation of Cr electroplating dipping explained lower exposure levels in platers. The use of personal protective equipment resulted in lower U-Cr levels in welding, bath plating and painting. An effect of wearing gloves was observed in machining. An effect of local exhaust ventilation and training was observed in welding. Regression analyses showed that in platers, exposure to air level of 5 µg/m3 corresponds to U-Cr level of 7 µg/g creatinine. In welders, the same inhalation exposure resulted in lower U-Cr levels reflecting toxicokinetic differences of different chromium species.
- HBM4EU Diisocyanates Study-Research Protocol for a Collaborative European Human Biological Monitoring Study on Occupational ExposurePublication . Jones, Kate; Galea, Karen S.; Scholten, Bernice; Loikala, Marika; Porras, Simo P.; Bousoumah, Radia; Ndaw, Sophie; Leese, Elizabeth; Louro, Henriqueta; Silva, Maria João; Viegas, Susana; Godderis, Lode; Verdonck, Jelle; Poels, Katrien; Gӧen, Thomas; Duca, Radu-Corneliu; Santonen, Tiina; HBM4EU Diisocyanates Study TeamDiisocyanates have long been a leading cause of occupational asthma in Europe, and recently, they have been subjected to a restriction under the REACH regulations. As part of the European Human Biomonitoring project (HBM4EU), we present a study protocol designed to assessoccupational exposure to diisocyanates in five European countries. The objectives of the study are to assess exposure in a number of sectors that have not been widely reported on in the past (for example, the manufacturing of large vehicles, such as in aerospace; the construction sector, where there are potentially several sources of exposure (e.g., sprayed insulation, floor screeds); the use of MDI-based glues, and the manufacture of spray adhesives or coatings) to test the usability of different biomarkers in the assessment of exposure to diisocyanates and to provide background data for regulatory purposes. The study will collect urine samples (analysed for diisocyanate-derived diamines and acetyl–MDI–lysine), blood samples (analysed for diisocyanate-specific IgE and IgG antibodies, inflammatory markers, and diisocyanate-specific Hb adducts for MDI), and buccal cells(micronucleus analysis) and measure fractional exhaled nitric oxide. In addition, occupational hygienemeasurements (air monitoring and skin wipe samples) and questionnaire data will be collected. The protocol is harmonised across the participating countries to enable pooling of data, leading to better and more robust insights and recommendations.
- HBM4EU e-waste study – Occupational exposure assessment to chromium, cadmium, mercury and lead during e-waste recyclingPublication . Leese, Elizabeth; Verdonck, Jelle; Porras, Simo P.; Airaksinen, Jaakko; Duca, Radu C.; Galea, Karen S.; Godderis, Lode; Janasik, Beata; Mahiout, Selma; Martins, Carla; Mārtiņsone, Inese; Ani, Maria Mirela; van Nieuwenhuyse, An; Scheepers, Paul T.J.; Silva, Maria João; Viegas, Susana; Santonen, Tiina; HBM4EU E-waste Study TeamProcessing of electronic waste (e-waste) causes the release of toxic substances which may lead to occupational exposure. The study aimed to gather information on potential occupational exposure during e-waste recycling, with a focus on biomonitoring of chromium, cadmium, mercury and lead. In eight European countries, 195 workers involved in the recycling of lead batteries, white goods, brown goods and metals and plastics were studied. These workers were compared to 73 controls with no direct involvement of e-waste recycling or other metal processing activities. The samples collected consisted of urine, blood and hair samples, along with personal air samples, hand wipes, settled dust samples and contextual information. Chromium, cadmium, mercury and lead was measured in urine, hair, air samples, hand wipes and settled dust; cadmium and lead in whole blood and chromium in red blood cells. Results showed that lead exposure is of concern, with workers from all five types of e-waste showing exposure, with elevated measurements in all matrices. Internal exposure markers were positively correlated with markers of external exposure, indicating workers are not adequately protected. Exposure to mercury and cadmium was also observed but to a much lesser extent with raised cadmium concentrations in urine and blood of all workers when compared to controls and raised mercury concentrations were found in brown goods workers when compared to controls. This study has highlighted exposure concerns when processing e-waste, particularly for lead across all waste categories studied, indicating a need for improved control measures in this sector.
- HBM4EU Occupational Biomonitoring Study on e-Waste-Study ProtocolPublication . Scheepers, Paul T.J.; Duca, Radu Corneliu; Galea, Karen S.; Godderis, Lode; Hardy, Emilie; Knudsen, Lisbeth E.; Leese, Elizabeth; Louro, Henriqueta; Mahiout, Selma; Ndaw, Sophie; Poels, Katrien; Porras, Simo P.; Silva, Maria João; Tavares, Ana Maria; Verdonck, Jelle; Viegas, Susana; Santonen, Tiina; HBM4EU e-Waste Study TeamWorkers involved in the processing of electronic waste (e-waste) are potentially exposed to toxic chemicals. If exposure occurs, this may result in uptake and potential adverse health effects. Thus, exposure surveillance is an important requirement for health risk management and prevention of occupational disease. Human biomonitoring by measurement of specific biomarkers in body fluids is considered as an effective method of exposure surveillance. The aim of this study is to investigate the internal exposure of workers processing e-waste using a human biomonitoring approach, which will stimulate improved work practices and contribute to raising awareness of potential hazards. This exploratory study in occupational exposures in e-waste processing is part of the European Human Biomonitoring Initiative (HBM4EU). Here we present a study protocol using a cross sectional survey design to study worker's exposures and compare these to the exposure of subjects preferably employed in the same company but with no known exposure to industrial recycling of e-waste. The present study protocol will be applied in six to eight European countries to ensure standardised data collection. The target population size is 300 exposed and 150 controls. Biomarkers of exposure for the following chemicals will be used: chromium, cadmium and lead in blood and urine; brominated flame retardants and polychlorobiphenyls in blood; mercury, organophosphate flame retardants and phthalates in urine, and chromium, cadmium, lead and mercury in hair. In addition, the following effect biomarkers will be studied: micronuclei, epigenetic, oxidative stress, inflammatory markers and telomere length in blood and metabolomics in urine. Occupational hygiene sampling methods (airborne and settled dust, silicon wristbands and handwipes) and contextual information will be collected to facilitate the interpretation of the biomarker results and discuss exposure mitigating interventions to further reduce exposures if needed. This study protocol can be adapted to future European-wide occupational studies.
