Browsing by Issue Date, starting with "2025-06-16"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Guidance on minimum information requirements (MIR) from designing to reporting human biomonitoring (HBM)Publication . Jeddi, Maryam Zare; Galea, Karen S.; Ashley-Martin, Jillian; Nassif, Julianne; Pollock, Tyler; Poddalgoda, Devika; Kasiotis, Konstantinos M.; Esteban-López, Marta; Chung, Ming Kei; Kil, Jihyon; Jones, Kate; Covaci, Adrian; Ait Bamai, Yu; Fernandez, Mariana F.; Pasanen Kase, Robert; Louro, Henriqueta; Silva, Maria J.; Santonen, Tiina; Katsonouri, Andromachi; Castaño, Argelia; Quirós-Alcalá, Lesliam; Argelia Castaño; Lesliam Quirós-Alcalá; Lin, Elizabeth Ziying; Pollitt, Krystal; Ana Virgolino; Virgolino, Ana; Scheepers, Paul T.J; Mustieles, Vicente; Cañas-Portilla, Ana Isabel; Viegas, Susana; von Goetz, Natalie; Sepai, Ovnair; Bird, Emily; Gӧen, Thomas; Fustinoni, Silvia; Ghosh, Manosij; Dirven, Hubert; Kwon, Jung-Hwan; Carignan, Courtney; Mizuno, Yuki; Ito, Yuki; Xia, Yankai; Shoji F. Nakayama; Nakayama, Shoji F.; Makris, Konstantinos C.; Parsons, Patrick J.; Gonzales, Melissa; Bader, Michael; Dusinska, Maria; Menouni, Aziza; Duca, Radu Corneliu; Chbihi, Kaoutar; El Jaafari, Samir; Godderis, Lode; van Nieuwenhuyse, An; Qureshi, Asif; Ali, Imran; Costa Trindade, Carla; Teixeira, Joao Paulo; Bartonova, Alena; Tranfo, Giovanna; Audouze, Karine; Verpaele, Steven; LaKind, Judy; Mol, Hans; Bessems, Jos; Magagna, Barbara; Nasution Waras, Maisarah; Connolly, Alison; Nascarella, Marc; Yang, Wonho; Huang, Po-Chin; Heussen, Henri; Goksel, Ozlem; Yunesian, Masud; Yeung, Leo W.Y.; Souza, Gustavo; Vekic, Ana Maria; Haynes, Erin N.; Hopf, Nancy B.Human biomonitoring (HBM) provides an integrated chemical exposures assessment considering all routes and sources of exposure. The accurate interpretation and comparability of biomarkers of exposure and effect depend on harmonized, quality-assured sampling, processing, and analysis. Currently, the lack of broadly accepted guidance on minimum information required for collecting and reporting HBM data, hinders comparability between studies. Furthermore, it prevents HBM from reaching its full potential as a reliable approach for assessing and managing the risks of human exposure to chemicals. The European Chapter of the International Society of Exposure Science HBM Working Group (ISES Europe HBM working group) has established a global human biomonitoring community network (HBM Global Network) to develop a guidance to define the minimum information to be collected and reported in HBM, called the “Minimum Information Requirements for Human Biomonitoring (MIR-HBM)”. This work builds on previous efforts to harmonize HBM worldwide. The MIR-HBM guidance covers all phases of HBM from the design phase to the effective communication of results. By carefully defining MIR for all phases, researchers and health professionals can make their HBM studies and programs are robust, reproducible, and meaningful. Acceptance and implementation of MIR-HBM Guidelines in both the general population and occupational fields would improve the interpretability and regulatory utility of HBM data. While implementation challenges remain—such as varying local capacities, and ethical and legal differences at the national levels, this initiative represents an important step toward harmonizing HBM practice and supports an ongoing dialogue among policymakers, legal experts, and scientists to effectively address these challenges. Leveraging the data and insights from HBM, policymakers can develop more effective strategies to protect public health and ensure safer working environments.
- Assessment of the Genotoxic Hazard of Estuarine Sediments Using an Integrative Approach With LacZ Plasmid‐Based Transgenic MicePublication . Pinto, Miguel; Sacadura, Joana; Costa, Pedro M.; Caeiro, Sandra; Louro, Henriqueta; Silva, Maria J.Under the influence of multiple anthropogenic pressures, from industrial to agricultural activities, estuaries have long been regarded as particularly sensitive ecosystems to contamination. The present study aimed at investigating the genotoxic potential of a contaminated sediment sample from an urban and industrial area of the Sado Estuary, by combining the analysis of multiple endpoints in the LacZ plasmid‐based transgenic mouse model exposed for 28 days to contaminated estuarine sediment extracts through drinking water. The DNA and chromosome damaging effects were monitored in peripheral blood at 7‐day intervals using the standard and enzyme‐modified Comet assay, as well as the micronucleus assays in peripheral blood cells. After euthanasia, DNA damage was analyzed in several mouse tissues, and LacZ mutant frequencies were determined in the liver. Livers were also surveyed for histopathological analysis. A time‐dependent increase in micronuclei frequency was seen at all tested doses, in spite of no induction of DNA damage in any organ or mutation induction in the liver of exposed mice. The liver from mice exposed to sediment extracts did not reveal major alterations besides evidence of inflammation. Overall, the integration of the endpoints analyzed in the mice is suggestive of potential chronic, rather than acute, adverse effects in vivo, and points to the need for further research in the resident human population in the area. This experimental design can be used to assess the genotoxicity of complex environmental mixtures, understand how they work, and reduce costs and resources while speeding up data collection and interpretation.
