Percorrer por autor "Armstrong, Ben"
A mostrar 1 - 10 de 31
Resultados por página
Opções de ordenação
- All-cause, cardiovascular, and respiratory mortality and wildfire-related ozone: a multicountry two-stage time series analysisPublication . Chen, Gongbo; Guo, Yuming; Yue, Xu; Xu, Rongbin; Yu,Wenhua; Ye, Tingting; Tong, Shilu; Gasparrini, Antonio; Bell,Michelle L.; Armstrong, Ben; Schwartz, Joel; Jaakkola, Jouni J.K.; Lavigne, Eric; Saldiva, Paulo Hilario Nascimento; Kan, Haidong; Royé, Dominic; Urban, Aleš; Vicedo-Cabrera, Ana Maria; Tobias, Aurelio; Forsberg, Bertil; Sera, Francesco; Lei, Yadong; Abramson, Michael J.; Li, Shanshan; Abrutzky, Rosana; Alahmad, Barrak; Ameling, Caroline; Åström, Christofer; Breitner, Susanne; Carrasco-Escobar, Gabriel; Coêlho, Micheline de Sousa Zanotti Stagliorio; Colistro, Valentina; Correa, Patricia Matus; Dang, Tran Ngoc; de'Donato, Francesca; Dung, Do Van; Entezari, Alireza; Garcia, Samuel David Osorio; Garland, Rebecca M.; Goodman, Patrick; Guo, Yue Leon; Hashizume, Masahiro; Holobaca, Iulian-Horia; Honda, Yasushi; Houthuijs, Danny; Hurtado-Díaz, Magali; Íñiguez, Carmen; Katsouyanni, Klea; Kim, Ho; Kyselý, Jan; Lee, Whanhee; Maasikmets, Marek; Madureira, Joana; Mayvaneh, Fatemeh; Nunes, Baltazar; Orru, Hans; Ortega, Nicol´s Valdés; Overcenco, Ala; Pan, Shih-Chun; Pascal, Mathilde; Ragettli, Martina S.; Rao, Shilpa; Ryti, Niilo R.I.; Samoli, Evangelia; Schneider, Alexandra; Scovronick, Noah; Seposo, Xerxes; Stafoggia, Massimo; Valencia, César De la Cruz; Zanobetti, Antonella; Zeka, Ariana; behalf of the Multi-Country Multi-City Collaborative Research NetworkBackground: Wildfire activity is an important source of tropospheric ozone (O3) pollution. However, no study to date has systematically examined the associations of wildfire-related O3 exposure with mortality globally. Methods: We did a multicountry two-stage time series analysis. From the Multi-City Multi-Country (MCC) Collaborative Research Network, data on daily all-cause, cardiovascular, and respiratory deaths were obtained from 749 locations in 43 countries or areas, representing overlapping periods from Jan 1, 2000, to Dec 31, 2016. We estimated the daily concentration of wildfire-related O3 in study locations using a chemical transport model, and then calibrated and downscaled O3 estimates to a resolution of 0·25° × 0·25° (approximately 28 km2 at the equator). Using a random-effects meta-analysis, we examined the associations of short-term wildfire-related O3 exposure (lag period of 0-2 days) with daily mortality, first at the location level and then pooled at the country, regional, and global levels. Annual excess mortality fraction in each location attributable to wildfire-related O3 was calculated with pooled effect estimates and used to obtain excess mortality fractions at country, regional, and global levels. Findings: Between 2000 and 2016, the highest maximum daily wildfire-related O3 concentrations (≥30 μg/m3) were observed in locations in South America, central America, and southeastern Asia, and the country of South Africa. Across all locations, an increase of 1 μg/m3 in the mean daily concentration of wildfire-related O3 during lag 0-2 days was associated with increases of 0·55% (95% CI 0·29 to 0·80) in daily all-cause mortality, 0·44% (-0·10 to 0·99) in daily cardiovascular mortality, and 0·82% (0·18 to 1·47) in daily respiratory mortality. The associations of daily mortality rates with wildfire-related O3 exposure showed substantial geographical heterogeneity at the country and regional levels. Across all locations, estimated annual excess mortality fractions of 0·58% (95% CI 0·31 to 0·85; 31 606 deaths [95% CI 17 038 to 46 027]) for all-cause mortality, 0·41% (-0·10 to 0·91; 5249 [-1244 to 11 620]) for cardiovascular mortality, and 0·86% (0·18 to 1·51; 4657 [999 to 8206]) for respiratory mortality were attributable to short-term exposure to wildfire-related O3. Interpretation: In this study, we observed an increase in all-cause and respiratory mortality associated with short-term wildfire-related O3 exposure. Effective risk and smoke management strategies should be implemented to protect the public from the impacts of wildfires.
- Associations Between Extreme Temperatures and Cardiovascular Cause-Specific Mortality: Results From 27 CountriesPublication . Alahmad, Barrak; Khraishah, Haitham; Royé, Dominic; Vicedo-Cabrera, Ana Maria; Guo, Yuming; Papatheodorou, Stefania I.; Achilleos, Souzana; Acquaotta, Fiorella; Armstrong, Ben; Bell, Michelle L.; Pan, Shih-Chun; Coelho, Micheline de Sousa Zanotti Stagliorio; Colistro, Valentina; Dang, Tran Ngoc; Dung, Do-Van; De' Donato, Francesca K.; Entezari, Alireza; Guo, Yue-Liang Leon; Hashizume, Masahiro; Honda, Yasushi; Indermitte, Ene; Íñiguez, Carmen; Jaakkola, Jouni J.K.; Kim, Ho; Lavigne, Eric; Lee, Whanhee; Li, Shanshan; Madureira, Joana; Mayvaneh, Fatemeh; Orru, Hans; Overcenco, Ala Vladimir; Ragettli, Martina S.; Ryti, Niilo R.I.; Saldiva, Paulo Hilario Nascimento; Scovronick, Noah; Seposo, Xerxes; Sera, Francesco; Silva, Susana; Stafoggia, Massimo; Tobias, Aurelio; Garshick, Eric; Bernstein, Aaron S.; Zanobetti, Antonella; Schwartz, Joel D.; Gasparrini, Antonio; Koutrakis, PetrosBackground: Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-specific cardiovascular deaths. Methods: We used unified data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of specific cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-specific daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fit case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. Results: The analyses included deaths from any cardiovascular cause (32 154 935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1–2.3) and 9.1 (95% eCI, 8.9–9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4–2.8) and 12.8 (95% eCI, 12.2–13.1) for every 1000 heart failure deaths, respectively. Conclusions: Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day—and especially under a changing climate.
- Comparison of weather station and climate reanalysis data for modelling temperature-related mortalityPublication . Mistry, Malcolm N.; Schneider, Rochelle; Masselot, Pierre; Royé, Dominic; Armstrong, Ben; Kyselý, Jan; Orru, Hans; Sera, Francesco; Tong, Shilu; Lavigne, Éric; Urban, Aleš; Madureira, Joana; García-León, David; Ibarreta, Dolores; Ciscar, Juan-Carlos; Feyen, Luc; de Schrijver, Evan; de Sousa Zanotti Stagliorio Coelho, Micheline; Pascal, Mathilde; Tobias, Aurelio; Alahmad, Barrak; Abrutzky, Rosana; Saldiva, Paulo Hilario Nascimento; Correa, Patricia Matus; Orteg, Nicolás Valdés; Kan, Haidong; Osorio, Samuel; Indermitte, Ene; Jaakkola, Jouni J.K.; Ryti, Niilo; Schneider, Alexandra; Huber, Veronika; Katsouyanni, Klea; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Michelozzi, Paola; de’Donato, Francesca; Hashizume, Masahiro; Kim, Yoonhee; Diaz, Magali Hurtado; De la Cruz Valencia, César; Overcenco, Ala; Houthuijs, Danny; Ameling, Caroline; Rao, Shilpa; Seposo, Xerxes; Nunes, Baltazar; Holobaca, Iulian-Horia; Kim, Ho; Lee, Whanhee; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Guo, Yue-Liang Leon; Chen, Bing-Yu; Colistro, Valentina; Zanobetti, Antonella; Schwartz, Joel; Dang, Tran Ngoc; Van Dung, Do; Guo, Yuming; Vicedo-Cabrera, Ana M.; Gasparrini, AntonioEpidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data. Our findings show that reanalysis temperature from the last ERA5 products generally compare well to station observations, with similar non-optimal temperature-related risk estimates. However, the analysis offers some indication of lower performance in tropical regions, with a likely underestimation of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure variables in epidemiological analyses of temperature-related risk.
- Effect modification of greenness on the association between heat and mortality: A multi-city multi-country studyPublication . Choi, Hayon Michelle; Lee, Whanhee; Roye, Dominic; Heo, Seulkee; Urban, Aleš; Entezari, Alireza; Vicedo-Cabrera, Ana Maria; Zanobetti, Antonella; Gasparrini, Antonio; Analitis, Antonis; Tobias, Aurelio; Armstrong, Ben; Forsberg, Bertil; Íñiguez, Carmen; Åström, Christofer; Indermitte, Ene; Lavigne, Eric; Mayvaneh, Fatemeh; Acquaotta, Fiorella; Sera, Francesco; Orru, Hans; Kim, Ho; Kyselý, Jan; Madueira, Joana; Schwartz, Joel; Jaakkola, Jouni J.K.; Katsouyanni, Klea; Diaz, Magali Hurtado; Ragettli, Martina S.; Pascal, Mathilde; Ryti, Niilo; Scovronick, Noah; Osorio, Samuel; Tong, Shilu; Seposo, Xerxes; Guo, Yue Leon; Guo, Yuming; Bell, Michelle L.Background: Identifying how greenspace impacts the temperature-mortality relationship in urban environments is crucial, especially given climate change and rapid urbanization. However, the effect modification of greenspace on heat-related mortality has been typically focused on a localized area or single country. This study examined the heat-mortality relationship among different greenspace levels in a global setting. Methods: We collected daily ambient temperature and mortality data for 452 locations in 24 countries and used Enhanced Vegetation Index (EVI) as the greenspace measurement. We used distributed lag non-linear model to estimate the heat-mortality relationship in each city and the estimates were pooled adjusting for city-specific average temperature, city-specific temperature range, city-specific population density, and gross domestic product (GDP). The effect modification of greenspace was evaluated by comparing the heat-related mortality risk for different greenspace groups (low, medium, and high), which were divided into terciles among 452 locations. Findings: Cities with high greenspace value had the lowest heat-mortality relative risk of 1·19 (95% CI: 1·13, 1·25), while the heat-related relative risk was 1·46 (95% CI: 1·31, 1·62) for cities with low greenspace when comparing the 99th temperature and the minimum mortality temperature. A 20% increase of greenspace is associated with a 9·02% (95% CI: 8·88, 9·16) decrease in the heat-related attributable fraction, and if this association is causal (which is not within the scope of this study to assess), such a reduction could save approximately 933 excess deaths per year in 24 countries. Interpretation: Our findings can inform communities on the potential health benefits of greenspaces in the urban environment and mitigation measures regarding the impacts of climate change.
- The effectiveness of heat prevention plans in reducing heat-related mortality across EuropePublication . Urban, Aleš; Huber, Veronika; Henry, Salomé; Plaza, Nuria Pilar; Tušlová, Lucie; Dasgupta, Shouro; Masselot, Pierre; Cvijanovic, Ivana; Mistry, Malcolm; Pascal, Mathilde; de'Donato, Francesca; Di Napoli, Claudia; Gosling, Simon N.; Kohnová, Silvia; Kyselý, Jan; Lüthi, Samuel; Pau, Louis-François; Ragettli, Martina S.; Ruuhela, Reija; Ryti, Niilo; das Neves Pereira da Silva, Susana; Zemah-Shamir, Shiri; Thiery, Wim; Vicedo-Cabrera, Ana-Maria; Wieczorek, Joanna; Sera, Francesco; Armstrong, Ben; Gasparrini, AntonioHeat-health warning systems and action plans, referred to as heat prevention plans (HPPs), are key public health interventions aimed at reducing heat-related mortality. Despite their importance, prior assessments of their effectiveness have yielded inconsistent results. The objective of this study is to systematically assess the effectiveness of HPPs in reducing heat-related mortality risk across Europe. We analysed daily mortality and mean temperature data from 102 locations in 14 European countries between 1990 and 2019. Using data from national experts, we identified the year of HPP implementation and categorised their development class. A three-stage analysis was conducted: (1) quasi-Poisson time series models were used to estimate location-specific warm-season exposure-response functions in 3 year subperiods; (2) mixed-effect meta-regression models with multilevel longitudinal structures were employed to quantify changes in pooled exposure-response functions due to HPP implementation, adjusted for long-term trends in heat-related mortality risks; and (3) the heat-related excess mortality due to HPP was calculated by comparing factual (with HPP) and counterfactual (without HPP) scenarios. Estimates are reported by country, region, and HPP class. HPP implementation was associated with a 25.2% [95% CI: 19.8% to 31.9%] reduction in excess deaths attributable to extreme heat, corresponding to 1.8 [95% CI: 1.3-2.4] avoided deaths annually per 100 000 inhabitants. This equates to an estimated 14 551 [95% CI: 10 118-19 072] total deaths avoided across all study locations following HPP implementation. No significant differences in HPP effectiveness were observed by European region or HPP class. Our findings provide robust evidence that HPPs substantially reduce heat-related mortality across Europe, accounting for temporal changes and geographical differences in risks. These results emphasise the importance of monitoring and evaluating HPPs to enhance adaptation to a warming climate.
- Estimating the urban heat-related mortality burden due to greenness: a global modelling studyPublication . Wu, Yao; Wen, Bo; Ye, Tingting; Huang, Wenzhong; Liu, Yanming; Gasparrini, Antonio; Sera, Francesco; Tong, Shilu; Lavigne, Eric; Roye, Dominic; Achilleos, Souzana; Ryti, Niilo; Pascal, Mathilde; Zeka, Ariana; de'Donato, Francesca; das Neves Pereira da Silva, Susana; Madureira, Joana; Mistry, Malcolm; Armstrong, Ben; Bell, Michelle L; Schwartz, Joel; Guo, Yuming; Li, ShanshanBackground: Heat exposure poses a substantial public health threat. Increasing greenness has been suggested as a mitigation strategy due to its cooling effect and potential to modify the heat-mortality association. This study aimed to comprehensively estimate the effects of increased greenness on heat-related deaths. Methods: We applied a multistage meta-analytical approach to estimate the potential reduction in global heat-related deaths by increasing greenness in the warm season in 2000-19 in 11 534 urban areas. We used the enhanced vegetation index (EVI) to indicate greenness and a random forest model to predict daily temperatures in counterfactual EVI scenarios. In the factual EVI scenarios, daily mortality and weather variables from 830 locations in 53 countries were extracted from the Multi-Country Multi-City Collaborative Research Network and used to assess heat-mortality associations. These associations were then extrapolated to each urban area under both factual and counterfactual EVI scenarios based on meta-regression models. Findings: We estimated that EVI increased by 10% would decrease the global population-weighted warm-season mean temperature by 0·08°C, EVI increased by 20% would decrease temperature by 0·14°C, and EVI increased by 30% would decrease temperature by 0·19°C. In the factual scenario, 3 153 225 (2·48%) of 127 179 341 total deaths could be attributed to heat exposure. The attributable fraction of heat-related deaths (as a fraction of total deaths) in 2000-19 would decrease by 0·67 (95% empirical CI 0·53-0·82) percentage points in the 10% scenario, 0·80 (0·63-0·97) percentage points in the 20% scenario, and 0·91 (0·72-1·10) percentage points in the 30% scenario, compared with the factual scenario. South Europe was modelled to have the largest decrease in attributable fraction of heat-related mortality. Interpretation: This modelling study suggests that increased greenness could substantially reduce the heat-related mortality burden. Preserving and expanding greenness might be potential strategies to lower ambient temperature and reduce the health impacts of heat exposure.
- Excess mortality attributed to heat and cold: a health impact assessment study in 854 cities in EuropePublication . Masselot, Pierre; Mistry, Malcolm; Vanoli, Jacopo; Schneider, Rochelle; Iungman, Tamara; Garcia-Leon, David; Ciscar, Juan-Carlos; Feyen, Luc; Orru, Hans; Urban, Aleš; Breitner, Susanne; Huber, Veronika; Schneider, Alexandra; Samoli, Evangelia; Stafoggia, Massimo; de’Donato, Francesca; Rao, Shilpa; Armstrong, Ben; Nieuwenhuijsen, Mark; Vicedo-Cabrera, Ana Maria; Gasparrini, Antonio; Achilleos, Souzana; Kyselý, Jan; Indermitte, Ene; Jaakkola, Jouni J.K.; Ryti, Niilo; Pascal, Mathilde; Katsouyanni, Klea; Analitis, Antonis; Goodman, Patrick; Zeka, Ariana; Michelozzi, Paola; Houthuijs, Danny; Ameling, Caroline; Silva, Susana; Madureira, Joana; Holobaca, Iulian-Horia; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Surname, First name; Zafeiratou, Sofia; Vazquez Fernandez, Liliana; Monteiro, Ana; Rai, Masna; Zhang, Siqi; Aunan, KristinBackground: Heat and cold are established environmental risk factors for human health. However, mapping the related health burden is a difficult task due to the complexity of the associations and the differences in vulnerability and demographic distributions. In this study, we did a comprehensive mortality impact assessment due to heat and cold in European urban areas, considering geographical differences and age-specific risks. Methods: We included urban areas across Europe between Jan 1, 2000, and Dec 12, 2019, using the Urban Audit dataset of Eurostat and adults aged 20 years and older living in these areas. Data were extracted from Eurostat, the Multi-country Multi-city Collaborative Research Network, Moderate Resolution Imaging Spectroradiometer, and Copernicus. We applied a three-stage method to estimate risks of temperature continuously across the age and space dimensions, identifying patterns of vulnerability on the basis of city-specific characteristics and demographic structures. These risks were used to derive minimum mortality temperatures and related percentiles and raw and standardised excess mortality rates for heat and cold aggregated at various geographical levels. Findings: Across the 854 urban areas in Europe, we estimated an annual excess of 203 620 (empirical 95% CI 180 882-224 613) deaths attributed to cold and 20 173 (17 261-22 934) attributed to heat. These corresponded to age-standardised rates of 129 (empirical 95% CI 114-142) and 13 (11-14) deaths per 100 000 person-years. Results differed across Europe and age groups, with the highest effects in eastern European cities for both cold and heat. Interpretation: Maps of mortality risks and excess deaths indicate geographical differences, such as a north-south gradient and increased vulnerability in eastern Europe, as well as local variations due to urban characteristics. The modelling framework and results are crucial for the design of national and local health and climate policies and for projecting the effects of cold and heat under future climatic and socioeconomic scenarios.
- Extreme Temperatures and Stroke Mortality: Evidence From a Multi-Country AnalysisPublication . Alahmad, Barrak ; Khraishah, Haitham ; Kamineni, Meghana ; Royé, Dominic ; Papatheodorou, Stefania I. ; Vicedo-Cabrera, Ana Maria ; Guo, Yuming ; Lavigne, Eric ; Armstrong, Ben ; Sera, Francesco ; Bernstein, Aaron S. ; Zanobetti, Antonella ; Garshick, Eric ; Schwartz, Joel ; Bell, Michelle L. ; Al-Mulla, Fahd; Koutrakis, Petros ; Gasparrini, Antonio ; Souzana, Achilleos ; Acquaotta, Fiorella ; Pan, Shih-Chun ; Coelho, Micheline Sousa Zanotti Stagliorio ; Colistro, Valentina ; Dang, Tran Ngoc ; Van Dung, Do ; De’ Donato, Francesca K. ; Entezari, Alireza ; Leon Guo, Yue-Liang ; Hashizume, Masahiro ; Honda, Yasushi ; Indermitte, Ene ; Íñiguez, Carmen; Jaakkola, Jouni J.K. ; Kim, Ho ; Lee, Whanhee; Li, Shanshan ; Madureira, Joana ; Mayvaneh, Fatemeh ; Orru, Hans ; Overcenco, Ala ; Ragettli, Martina S. ; Ryti, Niilo R.I. ; Saldiva, Paulo Hilario Nascimento; Scovronick, Noah ; Seposo, Xerxes ; das Neves Pereira da Silva, Susana; Stafoggia, Massimo ; Tobias, AurelioBackground: Extreme temperatures contribute significantly to global mortality. While previous studies on temperature and stroke-specific outcomes presented conflicting results, these studies were predominantly limited to single-city or single-country analyses. Their findings are difficult to synthesize due to variations in methodologies and exposure definitions. Methods: Within the Multi-Country Multi-City Network, we built a new mortality database for ischemic and hemorrhagic stroke. Applying a unified analysis protocol, we conducted a multinational case-crossover study on the relationship between extreme temperatures and stroke. In the first stage, we fitted a conditional quasi-Poisson regression for daily mortality counts with distributed lag nonlinear models for temperature exposure separately for each city. In the second stage, the cumulative risk from each city was pooled using mixed-effect meta-analyses, accounting for clustering of cities with similar features. We compared temperature-stroke associations across country-level gross domestic product per capita. We computed excess deaths in each city that are attributable to the 2.5% hottest and coldest of days based on each city's temperature distribution. Results: We collected data for a total of 3 443 969 ischemic strokes and 2 454 267 hemorrhagic stroke deaths from 522 cities in 25 countries. For every 1000 ischemic stroke deaths, we found that extreme cold and hot days contributed 9.1 (95% empirical CI, 8.6-9.4) and 2.2 (95% empirical CI, 1.9-2.4) excess deaths, respectively. For every 1000 hemorrhagic stroke deaths, extreme cold and hot days contributed 11.2 (95% empirical CI, 10.9-11.4) and 0.7 (95% empirical CI, 0.5-0.8) excess deaths, respectively. We found that countries with low gross domestic product per capita were at higher risk of heat-related hemorrhagic stroke mortality than countries with high gross domestic product per capita (P=0.02). Conclusions: Both extreme cold and hot temperatures are associated with an increased risk of dying from ischemic and hemorrhagic strokes. As climate change continues to exacerbate these extreme temperatures, interventional strategies are needed to mitigate impacts on stroke mortality, particularly in low-income countries.
- Fluctuating temperature modifies heat-mortality association around the globePublication . Wu, Yao; Wen, Bo; Li, Shanshan; Gasparrini, Antonio; Tong, Shilu; Overcenco, Ala; Urban, Aleš; Schneider, Alexandra; Entezari, Alireza; Vicedo-Cabrera, Ana Maria; Zanobetti, Antonella; Analitis, Antonis; Zeka, Ariana; Tobias, Aurelio; Alahmad, Barrak; Armstrong, Ben; Forsberg, Bertil; Íñiguez, Carmen; Ameling, Caroline; De la Cruz Valencia, César; Åström, Christofer; Houthuijs, Danny; Van Dung, Do; Royé, Dominic; Indermitte, Ene; Lavigne, Eric; Mayvaneh, Fatemeh; Acquaotta, Fiorella; de’Donato, Francesca; Sera, Francesco; Carrasco-Escobar, Gabriel; Kan, Haidong; Orru, Hans; Kim, Ho; Holobaca, Iulian-Horia; Kyselý, Jan; Madureira, Joana; Schwartz, Joel; Katsouyanni, Klea; Hurtado-Diaz, Magali; Ragettli, Martina S.; Hashizume, Masahiro; Pascal, Mathilde; de Sousa Zanotti Stagliorio Coélho, Micheline; Scovronick, Noah; Michelozzi, Paola; Goodman, Patrick; Nascimento Saldiva, Paulo Hilario; Abrutzky, Rosana; Osorio, Samuel; Dang, Tran Ngoc; Colistro, Valentina; Huber, Veronika; Lee, Whanhee; Seposo, Xerxes; Honda, Yasushi; Bell, Michelle L.; Guo, YumingStudies have investigated the effects of heat and temperature variability (TV) on mortality. However, few assessed whether TV modifies the heat-mortality association. Data on daily temperature and mortality in the warm season were collected from 717 locations across 36 countries. TV was calculated as the standard deviation of the average of the same and previous days' minimum and maximum temperatures. We used location-specific quasi-Poisson regression models with an interaction term between the cross-basis term for mean temperature and quartiles of TV to obtain heat-mortality associations under each quartile of TV, and then pooled estimates at the country, regional, and global levels. Results show the increased risk in heat-related mortality with increments in TV, accounting for 0.70% (95% confidence interval [CI]: -0.33 to 1.69), 1.34% (95% CI: -0.14 to 2.73), 1.99% (95% CI: 0.29-3.57), and 2.73% (95% CI: 0.76-4.50) of total deaths for Q1-Q4 (first quartile-fourth quartile) of TV. The modification effects of TV varied geographically. Central Europe had the highest attributable fractions (AFs), corresponding to 7.68% (95% CI: 5.25-9.89) of total deaths for Q4 of TV, while the lowest AFs were observed in North America, with the values for Q4 of 1.74% (95% CI: -0.09 to 3.39). TV had a significant modification effect on the heat-mortality association, causing a higher heat-related mortality burden with increments of TV. Implementing targeted strategies against heat exposure and fluctuant temperatures simultaneously would benefit public health.
- Geographical Variations of the Minimum Mortality Temperature at a Global ScalePublication . Tobías, Aurelio; Hashizume, Masahiro; Honda, Yasushi; Sera, Francesco; Ng, Chris Fook Sheng; Kim, Yoonhee; Roye, Dominic; Chung, Yeonseung; Dang, Tran Ngoc; Kim, Ho; Lee, Whanhee; Íñiguez, Carmen; Vicedo-Cabrera, Ana; Abrutzky, Rosana; Guo, Yuming; Tong, Shilu; Coelho, Micheline de Sousa Zanotti Stagliorio; Saldiva, Paulo Hilario Nascimento; Lavigne, Eric; Correa, Patricia Matus; Ortega, Nicolás Valdés; Kan, Haidong; Osorio, Samuel; Kyselý, Jan; Urban, Aleš; Orru, Hans; Indermitte, Ene; Jaakkola, Jouni J.K.; Ryti, Niilo R.I.; Pascal, Mathilde; Huber, Veronika; Schneider, Alexandra; Katsouyanni, Klea; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Goodman, Patrick; Zeka, Ariana; Michelozzi, Paola; de’Donato, Francesca; Alahmad, Barrak; Diaz, Magali Hurtado; De la Cruz Valencia, César; Overcenco, Ala; Houthuijs, Danny; Ameling, Caroline; Rao, Shilpa; Di Ruscio, Francesco; Carrasco, Gabriel; Seposo, Xerxes; Nunes, Baltazar; Madureira, Joana; Holobaca, Iulian-Horia; Scovronick, Noah; Acquaotta, Fiorella; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Guo, Yue-Liang Leon; Chen, Bing-Yu; Li, Shanshan; Colistro, Valentina; Zanobetti, Antonella; Schwartz, Joel; Dung, Do Van; Armstrong, Ben; Gasparrini, AntonioBackground: Minimum mortality temperature (MMT) is an important indicator to assess the temperature-mortality association, indicating long-term adaptation to local climate. Limited evidence about the geographical variability of the MMT is available at a global scale. Methods: We collected data from 658 communities in 43 countries under different climates. We estimated temperature-mortality associations to derive the MMT for each community using Poisson regression with distributed lag nonlinear models. We investigated the variation in MMT by climatic zone using a mixed-effects meta-analysis and explored the association with climatic and socioeconomic indicators. Results: The geographical distribution of MMTs varied considerably by country between 14.2 and 31.1 °C decreasing by latitude. For climatic zones, the MMTs increased from alpine (13.0 °C) to continental (19.3 °C), temperate (21.7 °C), arid (24.5 °C), and tropical (26.5 °C). The MMT percentiles (MMTPs) corresponding to the MMTs decreased from temperate (79.5th) to continental (75.4th), arid (68.0th), tropical (58.5th), and alpine (41.4th). The MMTs indreased by 0.8 °C for a 1 °C rise in a community's annual mean temperature, and by 1 °C for a 1 °C rise in its SD. While the MMTP decreased by 0.3 centile points for a 1 °C rise in a community's annual mean temperature and by 1.3 for a 1 °C rise in its SD. Conclusions: The geographical distribution of the MMTs and MMTPs is driven mainly by the mean annual temperature, which seems to be a valuable indicator of overall adaptation across populations. Our results suggest that populations have adapted to the average temperature, although there is still more room for adaptation.
