Percorrer por data de Publicação, começado por "2025-04-30"
A mostrar 1 - 2 de 2
Resultados por página
Opções de ordenação
- Estimating the urban heat-related mortality burden due to greenness: a global modelling studyPublication . Wu, Yao; Wen, Bo; Ye, Tingting; Huang, Wenzhong; Liu, Yanming; Gasparrini, Antonio; Sera, Francesco; Tong, Shilu; Lavigne, Eric; Roye, Dominic; Achilleos, Souzana; Ryti, Niilo; Pascal, Mathilde; Zeka, Ariana; de'Donato, Francesca; das Neves Pereira da Silva, Susana; Madureira, Joana; Mistry, Malcolm; Armstrong, Ben; Bell, Michelle L; Schwartz, Joel; Guo, Yuming; Li, ShanshanBackground: Heat exposure poses a substantial public health threat. Increasing greenness has been suggested as a mitigation strategy due to its cooling effect and potential to modify the heat-mortality association. This study aimed to comprehensively estimate the effects of increased greenness on heat-related deaths. Methods: We applied a multistage meta-analytical approach to estimate the potential reduction in global heat-related deaths by increasing greenness in the warm season in 2000-19 in 11 534 urban areas. We used the enhanced vegetation index (EVI) to indicate greenness and a random forest model to predict daily temperatures in counterfactual EVI scenarios. In the factual EVI scenarios, daily mortality and weather variables from 830 locations in 53 countries were extracted from the Multi-Country Multi-City Collaborative Research Network and used to assess heat-mortality associations. These associations were then extrapolated to each urban area under both factual and counterfactual EVI scenarios based on meta-regression models. Findings: We estimated that EVI increased by 10% would decrease the global population-weighted warm-season mean temperature by 0·08°C, EVI increased by 20% would decrease temperature by 0·14°C, and EVI increased by 30% would decrease temperature by 0·19°C. In the factual scenario, 3 153 225 (2·48%) of 127 179 341 total deaths could be attributed to heat exposure. The attributable fraction of heat-related deaths (as a fraction of total deaths) in 2000-19 would decrease by 0·67 (95% empirical CI 0·53-0·82) percentage points in the 10% scenario, 0·80 (0·63-0·97) percentage points in the 20% scenario, and 0·91 (0·72-1·10) percentage points in the 30% scenario, compared with the factual scenario. South Europe was modelled to have the largest decrease in attributable fraction of heat-related mortality. Interpretation: This modelling study suggests that increased greenness could substantially reduce the heat-related mortality burden. Preserving and expanding greenness might be potential strategies to lower ambient temperature and reduce the health impacts of heat exposure.
- Re‐evaluation of acesulfame K (E 950) as food additivePublication . EFSA Panel on Food Additives and Flavourings (FAF); Castle, Laurence; Andreassen, Monica; Aquilina, Gabriele; Bastos, Maria Lourdes; Boon, Polly; Fallico, Biagio; FitzGerald, Reginald; Frutos-Fernandez, Maria Jose; Grasl-Kraupp, Bettina; Gundert-Remy, Ursula; Gürtler, Rainer; Houdeau, Eric; Kurek, Marcin; Louro, Henriqueta; Morales, Patricia; Passamonti, Sabina; Batke, Monika; Bruzell, Ellen; Chipman, James; Cheyns, Karlien; Crebelli, Riccardo; Fortes, Cristina; Fürst, Peter; Halldorsson, Thorhallur; Leblanc, Jean-Charles; Mirat, Manuela; Lindtner, Oliver; Mortensen, Alicja; Barmaz, Stefania; Wright, Matthew; Civitella, Consuelo; Le Gall, Pauline; Mazzoli, Elena; Rasinger, Josef Daniel; Rincon, Ana; Tard, Alexandra; Lodi, FedericaThe present opinion deals with the re‐evaluation of acesulfame K (E 950) as a food additive. Acesulfame K (E 950) is the chemically manufactured compound 6‐methyl‐1,2,3‐oxathiazin‐4(3H)‐one‐2,2‐dioxide potassium salt. It is authorised for use in the European Union (EU) in accordance with Regulation (EC) No 1333/2008. The assessment involved a comprehensive review of existing authorisations, evaluations and new scientific data. Acesulfame K (E 950) was found to be stable under various conditions; at pH lower than 3 with increasing temperatures, it is degraded to a certain amount. Based on the available data, no safety concerns arise for genotoxicity of acesulfame K (E 950) and its degradation products. For the potential impurities, based on in silico data, a concern for genotoxicity was identified for 5‐chloro‐acesulfame; a maximum limit of 0.1 mg/kg, or alternatively, a request for appropriate genotoxicity data was recommended. Based on the synthesis of systematically appraised evidence of human and animal studies, the Panel concluded that there are no new studies suitable for identification of a reference point (RP) on adverse effects. Consequently, the Panel established an acceptable daily intake (ADI) of 15 mg/kg body weight (bw) per day based on the highest dose tested without adverse effects in a chronic toxicity and carcinogenicity study in rats; a study considered of moderate risk of bias and one of two key studies from the previous evaluations by the Scientific Committee on Food (SCF) and the Joint FAO/WHO Expert Committee on Food Additives (JECFA). This revised ADI replaces the ADI of 9 mg/kg bw per day established by the SCF. The Panel noted that the highest estimate of exposure to acesulfame K (E 950) was generally below the ADI in all population groups. The Panel recommended the European Commission to consider the revision of the EU specifications of acesulfame K (E 950).
