Repository logo
 
Loading...
Project Logo
Research Project

Associate Laboratory for Animal and Veterinary Sciences

Authors

Publications

Mackerel and Seaweed Burger as a Functional Product for Brain and Cognitive Aging Prevention
Publication . Cardoso, Carlos; Valentim, Jorge; Gomes, Romina; Matos, Joana; Rego, Andreia; Coelho, Inês; Delgado, Inês; Motta, Carla; Castanheira, Isabel; Prates, José A.M.; Bandarra, Narcisa M.; Afonso, Cláudia
Most world countries are experiencing a remarkable aging process. Meanwhile, 50 million people are affected by Alzheimer’s disease (AD) and related dementia and there is an increasing trend in the incidence of these major health problems. In order to address these, the increasing evidence suggesting the protective effect of dietary interventions against cognitive decline during aging may suggest a response to this challenge. There are nutrients with a neuroprotective effect. However, Western diets are poor in healthy n-3 polyunsaturated fatty acids (n-3 PUFAs), such as docosahexaenoic acid (DHA), iodine (I), and other nutrients that may protect against cognitive aging. Given DHA richness in chub mackerel (Scomber colias), high vitamin B9 levels in quinoa (Chenopodium quinoa), and I abundance in the seaweed Saccorhiza polyschides, a functional hamburger rich in these nutrients by using these ingredients was developed and its formulation was optimized in preliminary testing. The effects of culinary treatment (steaming, roasting, and grilling vs. raw) and digestion on bioaccessibility were evaluated. The hamburgers had high levels of n-3 PUFAs in the range of 42.0–46.4% and low levels of n-6 PUFAs (6.6–6.9%), resulting in high n-3/n-6 ratios (>6). Bioaccessibility studies showed that the hamburgers could provide the daily requirements of eicosapentaenoic acid (EPA) + DHA with 19.6 g raw, 18.6 g steamed, 18.9 g roasted, or 15.1 g grilled hamburgers. Polyphenol enrichment by the seaweed and antioxidant activity were limited. The hamburgers contained high levels of Se and I at 48–61 μg/100 g ww and 221–255 μg/100 g ww, respectively. Selenium (Se) and I bioaccessibility levels were 70–85% and 57–70%, respectively, which can be considered high levels. Nonetheless, for reaching dietary requirements, considering the influence of culinary treatment and bioaccessibility, 152.2–184.2 g would be necessary to ensure daily Se requirements and 92.0–118.1 g for I needs.
MicroRNA Profile, Putative Diagnostic Biomarkers and RNA-Based Therapies in the Inherited Lipid Storage Disease Niemann-Pick Type C
Publication . Encarnação, Marisa; David, Hugo; Coutinho, Maria Francisca; Moreira, Luciana; Alves, Sandra
Lipids are essential for cellular function and are tightly controlled at the transcriptional and post-transcriptional levels. Dysregulation of these pathways is associated with vascular diseases, diabetes, cancer, and several inherited metabolic disorders. MicroRNAs (miRNAs), in particular, are a family of post-transcriptional gene repressors associated with the regulation of many genes that encode proteins involved in multiple lipid metabolism pathways, thereby influencing their homeostasis. Thus, this class of non-coding RNAs (ncRNAs) has emerged as a promising therapeutic target for the treatment of lipid-related metabolic alterations. Most of these miRNAs act at an intracellular level, but in the past few years, a role for miRNAs as intercellular signaling molecules has also been uncovered since they can be transported in bodily fluids and used as potential biomarkers of lipid metabolic alterations. In this review, we point out the current knowledge on the miRNA signature in a lysosomal storage disorder associated with lipid dysfunction, Niemann-Pick type C, and discuss the potential use of miRNAs as biomarkers and therapeutic targets for RNA-based therapies.
Salmonella spp., Escherichia coli and Enterobacteriaceae Control at a Pig Abattoir: Are We Missing Lairage Time Effect, Pig Skin, and Internal Carcass Surface Contamination?
Publication . Dias Costa, Rui; Silva, Vanessa; Leite, Ana; Saraiva, Margarida; Teixeira Lopes, Teresa; Themudo, Patrícia; Campos, Joana; Vieira-Pinto, Madalena
To provide meat safety and consumer protection, appropriate hygiene control measures at an abattoir are required. This study aimed to evaluate the influence of visual fecal contamination level (VFCL) and lairage time (LT) on pig skin (PS) and external (ECS) and internal (ICS) carcass surfaces. The presence of Enterobacteriaceae, Escherichia coli (E. coli) and Salmonella in PS, ECS, and ICS were evaluated. A total of 300 paired samples were collected from 100 pigs. Results underlined the importance of the skin (Enterobacteriaceae: 3.27 ± 0.68 log CFU/cm2; E. coli: 3.15 ± 0.63 log CFU/cm2; Salmonella: 21% of samples) as a direct or indirect source of carcass contamination. Although VFCL revealed no significant effect (p > 0.05), the increase of LT had a significant impact (p < 0.001) on Enterobacteriaceae and E. coli levels across all analysed surfaces, and Salmonella presence on ICS (p < 0.01), demanding attention to LT. Also, the ICS showed a higher level of these bacteria compared to ECS. These results highlight the need of food business operators to consider ICS as an alternative area to sample for Salmonella, as a criterion for process hygiene based on EC Regulation No. 2073/2005, and as a potential contamination source to be integrated in the hazard analysis critical control point (HACCP) plans.
Enhancing meat quality of weaned piglets with the dietary incorporation of Ulva lactuca and carbohydrases supplementation
Publication . Pestana, José M.; Alfaia, Cristina M.; Ribeiro, David Miguel; Costa, Mónica M.; Carvalho, Daniela F.P.; Martins, Cátia F.; Alves, Victor M.D.; Lemos, José P.C.; Mourato, Miguel; Delgado, Inês; Gueifão, Sandra; Coelho, Inês; Almeida, André M.; Freire, João P.B.; Prates, José A.M.
The impact of the dietary incorporation of 7% Ulva lactuca, a green seaweed, on the quality and nutritional value of piglet’s meat was assessed. U. lactuca is rich in nutrients and bioactive compounds but its cell wall is composed of complex polysaccharides that reduce their bioavailability. Therefore, the effect of supplementing piglet diets with exogenous carbohydrases was also assessed here. A total of 40 male weaned piglets were divided into four dietary groups, each with 10 piglets: control (wheat, maize and soybean meal-based diet), UL (7% U. lactuca replacing the control diet), UL +R (UL and 0.005% Rovabio®), and UL +E (UL and 0.01% ulvan lyase). The piglets were fed the diets for 2 weeks. The results showed that incorporating U. lactuca in piglet diets did not influence most of the meat quality traits (P >0.05). However, the incorporation of U. lactuca with the commercial carbohydrase (UL +R) increased the amount of the docosahexaenoic acid (DHA; 22:6n-3) in their meat (P =0.011) compared with the control, by 54%. In addition, meat from piglets fed seaweed diets showed a nearly two-fold increase in iodine contents (P <0.001). Meat tenderness, juiciness and overall acceptability of piglets fed the control diet and the UL diet were lower than those fed the diets containing seaweed and carbohydrases (P <0.001). Overall, the findings indicate that 7% U. lactuca in the diets of weaned piglets had no major detrimental effects on meat quality and their carbohydrase supplementation has the potential to improve meat sensory traits.
Comprehensive typing and genetic analysis of L. monocytogenes isolates: implication for food safety and antibiotic resistance surveillance
Publication . Silva, Adriana; Silva, Vanessa; Borges, Vítor; Coelho, Anabela; Batista, Rita; Esteves, Alexandra; Igrejas, Gilberto; Saraiva, Cristina; Gomes, João Paulo; Poeta, Patrícia
Listeria species are commonly found in various environments and contaminated food, with livestock serving as a significant source of foodborne pathogens. Among these species, Listeria monocytogenes (L. monocytogenes) is particularly noteworthy as it can affect both livestock and humans. Antibiotics are frequently used in food animals for disease treatment and prevention on a large scale. This practice can lead to the selection of antibiotic-resistant bacterial strains, which can then spread to humans through the food chain. Consequently, L. monocytogenes, a ubiquitous foodborne pathogen, has been associated with global outbreaks of foodborne illnesses. To address this concern, the aim of the study was to conduct comprehensive typing and genetic analysis of 13 L. monocytogenes isolates obtained from food and food-processing environments.Among the 13 L. monocytogenes isolates, eight sequence types (ST) were identified: two isolates were identified as belonging to ST9; one as ST155; four as ST3, two as ST121, one as ST8; one as ST87; one as ST1; and one new ST belonging to CC121. Core-genome clustering analysis of L. monocytogenes was made to assess the genetic relatedness among the isolates. The core genome Multilocus Sequence Typing (cgMLST) analysis revealed three genetic clusters of high closely related isolates (≤7 allelic differences (ADs)): cluster 1. Regarding L. monocytogenes typing, ST3 was the most prevalent among the isolates, found in 4 isolates, followed by ST9 and ST121. Some of these isolates, like ST1, ST9 and ST87, were previously associated with human clinical cases. We used Whole Genome Sequencing (WGS) alongside epidemiological data to link strains to human illnesses and potential food sources. Through cgMLST analysis, we identified genetic clusters of closely related isolates, all linked to the same producers. This approach helped us pinpoint common sources of contamination and gain insights into the transmission dynamics of L. monocytogenes in the context of food safety and public health. The escalating antibiotic resistance in Listeria species, particularly in L. monocytogenes, emphasizes the need for heightened surveillance and improved hygiene practices in the food industry to curb the spread of antibiotic resistance and ensure food safety.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

6817 - DCRRNI ID

Funding Award Number

LA/P/0059/2020

ID