Loading...
Research Project
Research Institute for Medicines
Funder
Authors
Publications
Analysis of the In Vitro Toxicity of Nanocelluloses in Human Lung Cells as Compared to Multi-Walled Carbon Nanotubes
Publication . Pinto, Fátima; Lourenço, Ana Filipa; Pedrosa, Jorge F.S.; Gonçalves, Lídia; Ventura, Célia; Vital, Nádia; Bettencourt, Ana; Fernandes, Susete N.; da Rosa, Rafaela R.; Godinho, Maria Helena; Louro, Henriqueta; Ferreira, Paulo J.T.; Silva, Maria João
Cellulose micro/nanomaterials (CMNM), comprising cellulose microfibrils (CMF), nanofibrils (CNF), and nanocrystals (CNC), are being recognized as promising bio-nanomaterials due to their natural and renewable source, attractive properties, and potential for applications with industrial and economical value. Thus, it is crucial to investigate their potential toxicity before starting their production at a larger scale. The present study aimed at evaluating the cell internalization and in vitro cytotoxicity and genotoxicity of CMNM as compared to two multi-walled carbon nanotubes (MWCNT), NM-401 and NM-402, in A549 cells. The exposure to all studied NM, with the exception of CNC, resulted in evident cellular uptake, as analyzed by transmission electron microscopy. However, none of the CMNM induced cytotoxic effects, in contrast to the cytotoxicity observed for the MWCNT. Furthermore, no genotoxicity was observed for CNF, CNC, and NM-402 (cytokinesis-block micronucleus assay), while CMF and NM-401 were able to significantly raise micronucleus frequency. Only NM-402 was able to induce ROS formation, although it did not induce micronuclei. Thus, it is unlikely that the observed CMF and NM-401 genotoxicity is mediated by oxidative DNA damage. More studies targeting other genotoxicity endpoints and cellular and molecular events are underway to allow for a more comprehensive safety assessment of these nanocelluloses.
Monographic Quality Parameters and Genotoxicity Assessment of Asphodelus bento-rainhae and Asphodelus macrocarpus Root Tubers as Herbal Medicines
Publication . Malmir, Maryam; Serrano, Rita; Lima, Katelene; Duarte, Maria Paula; Moreira da Silva, Isabel; Silva Lima, Beatriz; Caniça, Manuela; Silva, Olga
Root tubers of Asphodelus bento-rainhae subsp. bento-rainhae (AbR), an endemic species with relevant interest due to conservation concerns, and Asphodelus macrocarpus subsp. macrocarpus (AmR) have been traditionally used for culinary and medicinal purposes, mainly associated with skin infection and inflammation. The present study aims to establish the quality control criteria for the proper characterization of dried root tubers of both species as herbal substances, together with their preclinical safety assessments. Botanical identification using macroscopic and microscopic techniques and phytochemical evaluation/quantification of the main classes of marker secondary metabolites, including phenolic compounds (flavonoid, anthraquinone, condensed and hydrolysable tannin) and terpenoids were performed. Additionally, in vitro genotoxicity/mutagenicity was evaluated by Ames test. Evident morphological differences in the development of tubercles (3.5 × 1 cm in AbR and 8.7 × 1.4 cm in AmR) and microscopicly in the arrangements and characteristics of the vascular cylinder (metaxylem and protoxylems) were found. Anatomical similarities such as multiple-layered epidermis (velamen) and the cortex area with thin-walled idioblasts (134 ± 2.9 µm and 150 ± 27.6 µm) containing raphide crystals (37.2 ± 14.2 µm and 87.7 ± 15.3 µm) were observed between AbR and AmR, respectively. Terpenoids (173.88 ± 29.82 and 180.55 ± 10.57 mg OAE/g dried weight) and condensed tannins (128.64 ± 14.05 and 108.35 ± 20.37 mg CAE/g dried weight) were found to be the main class of marker secondary metabolites of AbR and AmR extracts, respectively. No genotoxicity (up to 5 mg/plate, without metabolic activation) was detected in these medicinal plants' tested extracts. The obtained results will contribute to the knowledge of the value of the Portuguese flora and their future commercial cultivation utilization as raw materials for industrial and pharmaceutical use.
Ingested nanomaterials: impact of digestion process in the physicochemical characteristics and biological consequences in intestinal cells
Publication . Vieira, Adriana; Vital, Nádia; Roque, Rossana; Gramacho, Ana Catarina; Rolo, Dora; Gonçalves, Lídia D.; Bettencourt, Ana; Martins, Carla; Assunção, Assunção; Alvito, Paula; Silva, Maria João; Louro, Henriqueta
Nanomaterials(NMs) provide a basis for key enabling technologies, in view of their potential to improve
many products and processes, namely in food and feed industry. That is the case of titanium dioxide
NMs(TiO2 NMs), presenting beneficial properties for a broad range of innovative applications such as
food additives, toothpaste, pharmaceuticals, food products, etc., that may drive ingestion. The oral
exposure can occur directly, by consumption of products/pharmaceuticals or foods containing NMs, or
indirectly, through the ingestion of foods contaminated with NMs released from food-contact materials or
environmental sources. As such, the gastrointestinal tract is the first site of contact of the ingested NMs,
allowing a systemic exposure if the intestinal barriers is surpassed.
This work aimed to investigate how the digestion process affects the physicochemical properties of three
different TiO2 NMs(NM-102, NM-103 and NM-105) and their toxic effects on intestinal cells.
After undergoing digestion through the standardized static INFOGEST 2.0 in vitro digestion method, the
cytotoxicity of the TiO2 NMs was determined in Caco-2 and HT29-MTX-E12 intestinal cells, using the
MTT assay. Furthermore, the cytokinesis-blocked micronucleus assay was used to investigate their
genotoxicity in both cell lines in order to predict their carcinogenic potential.
The results showed that, for one TiO2 NM(NM-105), the digestion caused changes in the hydrodynamic
size of the NM and a more pronounced toxicity in HT29-MTX-E12 intestinal cells, as compared to the
undigested one. The micronucleus assay suggests effects on the chromosomal integrity in the HT29-MTXE12
cells, for all the tested TiO2 NM especially after the in vitro digestion. Overall, we conclude that
including the digestion prior to the in vitro bioassays for the safety evaluation of ingested NMs, allows
integrating the physiological modifications that the NMs suffer in the organism, contributing to an
improved hazard assessment of ingested NMs.
Investigation of the genotoxicity of digested titanium dioxide nanomaterials in human intestinal cells
Publication . Vieira, Adriana; Vital, Nádia; Rolo, Dora; Roque, Rossana; Gonçalves, Lídia M.; Bettencourt, Ana; Silva, Maria João; Louro, Henriqueta
The widespread use of titanium dioxide nanomaterials (TiO2 NMs) in food and consumer products such as toothpaste or food contact materials, suggests the relevance of human oral exposure to these nanomaterials (NMs) and raises the possibility of adverse effects in the gastrointestinal tract (GIT). We previously showed that the in vitro digestion of TiO2 NMs may increase their toxicity in intestinal cells. In this work, we analyzed the genotoxicity and the intracellular reactive oxygen species induction by physiologically relevant concentrations of three different TiO2 NMs (NM-102, NM-103 and NM-105) in Caco-2 and HT29-MTX-E12 intestinal cells, while considering the potential influence of the digestion process in the NMs' physiochemical characteristics. The results evidenced a DNA-damaging effect dependent on the NM, more relevant for the rutile/anatase NM-105, possibly due to its lower hydrodynamic size in the cells medium. In addition, the results of the micronucleus assay suggest effects on chromosomal integrity, an indicator of cancer risk, in the HT29-MTX-E12 cells, for all the tested TiO2 NMs, especially after the in vitro digestion. This work supports the evidence for concerns on the use of TiO2 NMs as a food additive, recently reported by EFSA, and for their use in applications in consumer products that may drive human exposure through ingestion.
Antimicrobial activity of prophage endolysins against critical Enterobacteriaceae antibiotic-resistant bacteria
Publication . Gonçalves, Tiago; Marques, Andreia T.; Manageiro, Vera; Tanoeiro, Luis; Vital, Joana S.; Duarte, Aida; Vítor, Jorge M.B.; Caniça, Manuela; Gaspar, Maria Manuela; Vale, Filipa F.
Enterobacteriaceae species are part of the 2017 World Health Organization antibiotic-resistant priority pathogens list for development of novel medicines. Multidrug-resistant Klebsiella pneumoniae is an increasing threat to public health and has become a relevant human pathogen involved in life-threatening infections. Phage therapy involves the use of phages or their lytic endolysins as bioagents for the treatment of bacterial infectious diseases. Gram-negative bacteria have an outer membrane, making difficult the access of endolysins to the peptidoglycan. Here, three endolysins from prophages infecting three distinct Enterobacterales species, Kp2948-Lys from K. pneumoniae, Ps3418-Lys from Providencia stuartii, and Kaer26608-Lys from Klebsiella aerogenes, were purified and exhibited antibacterial activity against their specific bacterium species verified by zymogram assays. These three endolysins were successfully associated to liposomes composed of dimyristoyl phosphatidyl choline (DMPC), dioleoyl phosphatidyl ethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS) at a molar ratio (4:4:2), with an encapsulation efficiency ranging from 24 to 27%. Endolysins encapsulated in liposomes resulted in higher antibacterial activity compared to the respective endolysin in the free form, suggesting that the liposome-mediated delivery system enhances fusion with outer membrane and delivery of endolysins to the target peptidoglycan. Obtained results suggest that Kp2948-Lys appears to be specific for K. pneumoniae, while Ps3418-Lys and Kaer26608-Lys appear to have a broader antibacterial spectrum. Endolysins incorporated in liposomes constitute a promising weapon, applicable in the several dimensions (human, animals and environment) of the One Health approach, against multidrug-resistant Enterobacteriaceae.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
6817 - DCRRNI ID
Funding Award Number
UIDP/04138/2020
