Browsing by Issue Date, starting with "2023-07-21"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Chlamydial and Gonococcal Genital Infections: A Narrative ReviewPublication . Rodrigues, Rafaela; Vieira-Baptista, Pedro; Catalão, Carlos; Borrego, Maria José; Sousa, Carlos; Vale, NunoSexually transmitted infections (STIs) constitute one of the leading causes of disease burden worldwide, leading to considerable morbidity, mortality, health expenditures, and stigma. Of note are the most common bacterial STIs, chlamydial and gonococcal infections, whose etiological agents are Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG), respectively. Despite being usually asymptomatic, in some cases these infections can be associated with long-term severe complications, such as pelvic inflammatory disease, chronic pelvic pain, infertility, ectopic pregnancy, and increased risk of other STIs acquisition. As the symptoms, when present, are usually similar in both infections, and in most of the cases these infections co-occur, the dual-test strategy, searching for both pathogens, should be preferred. In line with this, herein we focus on the main aspects of CT and NG infections, the clinical symptoms as well as the appropriate state-of-the-art diagnostic tests and treatment. Cost-effective strategies for controlling CT and NG infections worldwide are addressed. The treatment for both infections is based on antibiotics. However, the continuing global rise in the incidence of these infections, concomitantly with the increased risk of antibiotics resistance, leads to difficulties in their control, particularly in the case of NG infections. We also discuss the potential mechanism of tumorigenesis related to CT infections. The molecular bases of CT and NG infections are addressed, as they should provide clues for control or eradication, through the development of new drugs and/or effective vaccines against these pathogens.
- The Toxicity of Nanomaterials and Legacy Contaminants: Risks to the Environment and Human HealthPublication . Reis, Ana Teresa; Costa, Carla; Fraga, SóniaNanotechnology and the incorporation of nanomaterials (NM) into everyday products help to solve problems in society and improve the quality of life, allowing for major advances in the technological, industrial, and medical fields. Despite this positive and encouraging side of nanotechnology, the potential risks of NM to human health and the environment, as well as the ethical, legal, and social implications associated with nanotechnology, cannot be disregarded. Indeed, the same characteristics that make NM interesting from a technological application point of view may be undesirable upon their release into the environment. In fact, hundreds of tons of NM are released into the environment every year. The reduced dimensions of NM facilitate their diffusion into and transport through the atmosphere, water, and soil, and as well as their uptake and (bio)accumulation in organisms. Nanotoxicology has emerged as a discipline that seeks to assess the potential risk of NM, integrating knowledge and resources from material science, biology, toxicology, and analytical chemistry. Several studies have alerted us to the risks that certain NM represent for the environment and for our health, depending on their persistence and circulation in ecosystems, on the dose and responses of organisms to acute and chronic exposure to these substances, and on the ability of organisms to (bio)accumulate and/or excrete them. However, knowledge of the harmful effects of these contaminants of emerging concern is still insufficient, including mixture effects. Efforts to advance our knowledge on the reactivity of NM and their effects have been made using mostly in vitro and in vivo models; however, in recent years, in silico approaches and quantitative structure–activity relationship (QSAR) modeling have been gaining more attention. Nanotoxicity assessment using in vitro models gathers important information regarding the mechanism(s) of action of NM at the cellular and molecular levels. These models also offer the benefits of reduced costs and ethical concerns over animal welfare (3Rs principle), usually resulting in the faster toxicity screening of chemicals, an advantage considering the increasing number of materials and contaminant combinations to be tested. However, they lack the complexity and metabolic capabilities that in vivo models provide, which is important in identifying the relationship between exposure dose and the occurrence of adverse effects, and in understanding how the body handles NM in terms of their absorption, distribution, metabolism, and excretion (ADME). (...)
