Browsing by Issue Date, starting with "2022-08-17"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- The Use of Human Biomonitoring to Assess Occupational Exposure to PAHs in Europe: A Comprehensive ReviewPublication . Louro, Henriqueta; Gomes, Bruno Costa; Saber, Anne Thoustrup; Iamiceli, Anna Laura; Göen, Thomas; Jones, Kate; Katsonouri, Andromachi; Neophytou, Christiana M.; Vogel, Ulla; Ventura, Célia; Oberemm, Axel; Duca, Radu Corneliu; Fernandez, Mariana F.; Olea, Nicolas; Santonen, Tiina; Viegas, Susana; Silva, Maria JoãoPolycyclic aromatic hydrocarbons (PAHs) are among the chemicals with proven impact on workers’ health. The use of human biomonitoring (HBM) to assess occupational exposure to PAHs has become more common in recent years, but the data generated need an overall view to make them more usable by regulators and policymakers. This comprehensive review, developed under the Human Biomonitoring for Europe (HBM4EU) Initiative, was based on the literature available from 2008–2022, aiming to present and discuss the information on occupational exposure to PAHs, in order to identify the strengths and limitations of exposure and effect biomarkers and the knowledge needs for regulation in the workplace. The most frequently used exposure biomarker is urinary 1-hydroxypyrene (1-OH-PYR), a metabolite of pyrene. As effect biomarkers, those based on the measurement of oxidative stress (urinary 8-oxo-dG adducts) and genotoxicity (blood DNA strand-breaks) are the most common. Overall, a need to advance new harmonized approaches both in data and sample collection and in the use of appropriate biomarkers in occupational studies to obtain reliable and comparable data on PAH exposure in different industrial sectors, was noted. Moreover, the use of effect biomarkers can assist to identify work environments or activities of high risk, thus enabling preventive risk mitigation and management measures.
- Time Trends of Acrylamide Exposure in Europe: Combined Analysis of Published Reports and Current HBM4EU StudiesPublication . Poteser, Michael; Laguzzi, Federica; Schettgen, Thomas; Vogel, Nina; Weber, Till; Zimmermann, Philipp; Hahn, Domenica; Kolossa-Gehring, Marike; Namorado, Sónia; Van Nieuwenhuyse, An; Appenzeller, Brice; Halldorsson, Thorhallur; Eiríksdóttir, Ása; Haug, Line Småstuen; Thomsen, Cathrine; Barbone, Fabio; Rosolen, Valentina; RAMBAUD, Loic; RIOU, Margaux; Göen, Thomas; Nübler, Stefanie; Schäfer, Moritz; Haji-Abbas-Zarrabi, Karin; Gilles, Liese; Rodriguez Martin, Laura; Schoeters, Greta; Sepai, Ovnair; Govarts, Eva; Moshammer, HannsMore than 20 years ago, acrylamide was added to the list of potential carcinogens found in many common dietary products and tobacco smoke. Consequently, human biomonitoring studies investigating exposure to acrylamide in the form of adducts in blood and metabolites in urine have been performed to obtain data on the actual burden in different populations of the world and in Europe. Recognizing the related health risk, the European Commission responded with measures to curb the acrylamide content in food products. In 2017, a trans-European human biomonitoring project (HBM4EU) was started with the aim to investigate exposure to several chemicals, including acrylamide. Here we set out to provide a combined analysis of previous and current European acrylamide biomonitoring study results by harmonizing and integrating different data sources, including HBM4EU aligned studies, with the aim to resolve overall and current time trends of acrylamide exposure in Europe. Data from 10 European countries were included in the analysis, comprising more than 5500 individual samples (3214 children and teenagers, 2293 adults). We utilized linear models as well as a non-linear fit and breakpoint analysis to investigate trends in temporal acrylamide exposure as well as descriptive statistics and statistical tests to validate findings. Our results indicate an overall increase in acrylamide exposure between the years 2001 and 2017. Studies with samples collected after 2018 focusing on adults do not indicate increasing exposure but show declining values. Regional differences appear to affect absolute values, but not the overall time-trend of exposure. As benchmark levels for acrylamide content in food have been adopted in Europe in 2018, our results may imply the effects of these measures, but only indicated for adults, as corresponding data are still missing for children.
