Browsing by Issue Date, starting with "2022-01-21"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Heat-related mortality amplified during the COVID-19 pandemicPublication . Sousa, Pedro; Trigo, Ricardo; Russo, Ana; Geirinhas, João; Rodrigues, Ana Paula; Silva, Susana; Torres, Ana RitaExcess mortality not directly related to the virus has been shown to have increased during the COVID-19 pandemic. However, changes in heat-related mortality during the pandemic have not been addressed in detail. Here, we performed an observational study crossing daily mortality data collected in Portugal (SICO/DGS) with high-resolution temperature series (ERA5/ECMWF), characterizing their relation in the pre-pandemic, and how it aggravated during 2020. The combined result of COVID-19 and extreme temperatures caused the largest annual mortality burden in recent decades (~ 12 000 excess deaths [~ 11% above baseline]). COVID-19 caused the largest fraction of excess mortality during March to May (62%) and from October onwards (85%). During summer, its direct impact was residual, and deaths not reported as COVID-19 dominated excess mortality (553 versus 3 968). A prolonged hot spell led mortality to the upper tertile, reaching its peak in mid-July (+ 45% deaths/day). The lethality ratio (+ 14 deaths per cumulated ºC) was higher than that observed in recent heatwaves. We used a statistical model to estimate expected deaths due to cold/heat, indicating an amplification of at least 50% in heat-related deaths during 2020 compared to pre-pandemic years. Our findings suggest mortality during 2020 has been indirectly amplified by the COVID-19 pandemic, due to the disruption of healthcare systems and fear of population in attending healthcare facilities (expressed in emergency room admissions decreases). While lockdown measures and healthcare systems reorganization prevented deaths directly related to the virus, a significant burden due to other causes represents a strong secondary impact. This was particularly relevant during summer hot spells, when the lethality ratio reached magnitudes not experienced since the 2003 heatwaves. This severe amplification of heat-related mortality during 2020 stresses the need to resume normal healthcare services and public health awareness.
- Performance comparison of different classification algorithms applied to the diagnosis of familial hypercholesterolemia in paediatric subjectsPublication . Albuquerque, João; Medeiros, Ana Margarida; Alves, Ana Catarina; Bourbon, Mafalda; Antunes, MaríliaFamilial Hypercholesterolemia (FH) is an inherited disorder of lipid metabolism, characterized by increased low density lipoprotein cholesterol (LDLc) levels. The main purpose of the current work was to explore alternative classification methods to traditional clinical criteria for FH diagnosis, based on several biochemical and biological indicators. Logistic regression (LR), decision tree (DT), random forest (RF) and naive Bayes (NB) algorithms were developed for this purpose, and thresholds were optimized by maximization of Youden index (YI). All models presented similar accuracy (Acc), specificity (Spec) and positive predictive values (PPV). Sensitivity (Sens) and G-mean values were significantly higher in LR and RF models, compared to the DT. When compared to Simon Broome (SB) biochemical criteria for FH diagnosis, all models presented significantly higher Acc, Spec and G-mean values (p < 0.01), and lower negative predictive value (NPV, p < 0.05). Moreover, LR and RF models presented comparable Sens values. Adjustment of the cut-off point by maximizing YI significantly increased Sens values, with no significant loss in Acc. The obtained results suggest such classification algorithms can be a viable alternative to be used as a widespread screening method. An online application has been developed to assess the performance of the LR model in a wider population.
