Browsing by Issue Date, starting with "2021-08-28"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- SVInterpreter: a web-based tool for structural variants inspection and identification of possible disease-causing candidate genesPublication . Fino, Joana; Marques, Barbara; Dong, Zirui; David, DezsoIntroduction: With the advent of genomic sequencing, the identification of structural variants (SVs) is no longer a challenge, being possible to detect an average of 5 K SVs by individual. Contrarily, the annotation of the genome is incomplete, and the data is scattered along different databases, making SV manual evaluation complicated and time-consuming. Also, the available tools are limited on their scope. Thus, to address the need of a comprehensive application to assist evaluation of clinical outcome of SVs, we developed Structural Variant Interpreter (SVInterpreter). Methods: SVInterpreter is a free Python-CGI developed Web application able to analyze SVs using Topologically Associated Domains as genome units, within which genome browsers data, medically actionable genes, virtual gene panels and HPO similarity results, among other information, is retrieved. Results: We started by re-analysing 220 published SVs, of which about 50% were previously classified as VUS. SVInterpreter corroborated the previous classification in about 84% of the SVs. In about 5% of the SVs, SVInterpreter gave indication of possible position effect, through phenotype similarity, disrupted chromatin loops or genome wide association studies. Then, we show the applicability of SVInterpreter on the clinical setting, by inspecting 15 cases analysed by chromosomal microarray or genome sequencing. Conclusions: To our knowledge, SVInterpreter is the most comprehensive TAD based tool to assist prediction of clinical outcome of SVs. Based on gathered information, identification of possible disease-causing candidate genes and SVs is easily achievable. SVInterpreter is available at http://dgrctools-insa.min-saude.pt/cgi-bin/SVInterpreter.py
