Browsing by Issue Date, starting with "2018-11-10"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Core genome phylogenetic analysis of the avian associated Borrelia turdi indicates a close relationship to Borrelia gariniiPublication . Margos, G.; Becker, N.S.; Fingerle, V.; Sing, A.; Ramos, J.A.; Lopes de Carvalho, I.; Norte, A.C.Borrelia burgdorferi sensu lato comprises a species complex of tick-transmitted bacteria that includes the agents of human Lyme borreliosis. Borrelia turdi is a genospecies of this complex that exists in cryptic transmission cycles mainly between ornithophilic tick vectors and their avian hosts. The species has been originally discovered in avian transmission cycles in Asia but has increasingly been found in Europe. Next generation sequencing was used to sequence the genome of B. turdi isolates obtained from ticks feeding on birds in Portugal to better understand the evolution and phylogenetic relationship of this avian and ornithophilic tick-associated genospecies. Here we use draft genomes of these B. turdi isolates for comparative analysis and to determine the taxonomic position within the B. burgdorferi s.l. species complex. The main chromosomes showed a maximum similarity of 93% to other Borrelia species whilst most plasmids had lower similarities. All three isolates had nine or 10 plasmids and, interestingly, one plasmid with a novel partitioning protein; this plasmid was termed lp30. Phylogenetic analysis of multilocus sequence typing housekeeping genes and 113 single copy orthologous genes revealed that the isolates clustered according to their classification as B. turdi. In phylogenies generated from these 113 genes the isolates cluster together with other Eurasian genospecies and form a sister clade to the avian associated B. garinii and the rodent associated B. bavariensis. These findings show that Borrelia species maintained in cryptic ecological cycles need to be included to fully understand the complex ecology and evolutionary history of this bacterial species complex.
- Modeling of α-acids and xanthohumol extraction in dry-hopped beersPublication . Machado, Júlio C.; Faria, Miguel A.; Melo, Armindo; Martins, Zita E.; Ferreira, Isabel M.P.L.V.O.The practice of dry-hopping has been used by the brewing industry to obtain beers with increased contents of flavor and bitterness compounds. Notwithstanding this, other compounds such as α-acids (AA) and xhanthohumol (XN) are co-extracted influencing the final characteristics of the beer, particularly its beneficial bioactivity. In this context a model for the understanding of AA and XN extraction by dry-hopping is proposed. The varieties Chinook (CHI), East Kent Goldings (EKG) and Tettnanger (TET) were assayed and robust statistical approaches were applied for data interpretation. Concentration of AA in beers post-maturation reached values higher than 20 mg/L using 2.8 g/L of CHI hops and 10 days of maturation. For XN, a similar behavior was verified. The maximum efficiency of AA and XN extraction (transfer rate) were reached at 13.5 days with dose rates of 147 and 13.9 mg/L, respectively.
- l-proline supplementation improves nitric oxide bioavailability and counteracts the blood pressure rise induced by angiotensin II in ratsPublication . Leal, Joana; Teixeira-Santos, Luísa; Pinho, Dora; Afonso, Joana; Carvalho, Jorge; de Lourdes Bastos, Maria; Albino-Teixeira, António; Fraga, Sónia; Sousa, TeresaWe evaluated whether l-proline (Pro) supplementation improves redox status and nitric oxide (NO) bioavailability and prevents or delays angiotensin II (AngII)-induced hypertension. Male Sprague-Dawley rats were distributed to four experimental groups: Pro + AngII (Pro-Ang), Pro + Saline (Pro-Sal), Vehicle + AngII (Veh-Ang) and Veh + Saline (Veh-Sal). Pro solution (2 g.kg-1·day-1) or water (vehicle) were orally administered, from day 0 to day 21. AngII (200 ng.kg-1.min-1) or saline were infused (s.c.) from day 7 to day 21. Systolic blood pressure (SBP) was measured by the tail-cuff method. From day 20-21, animals were kept on metabolic cages for 24h-urine collection. On day 21, urine and blood were collected for further quantification of redox status biomarkers, NO-related markers (urinary nitrates and nitrites, U-NOx; plasma asymmetric dimethylarginine, P-ADMA), metabolic and renal parameters. Pro prevented the AngII-induced SBP rise [mean (95% CI), Day 19: Pro-AngII, 137 (131; 143) vs. Veh-AngII, 157 (151; 163) mm Hg, P < 0.001]. Pro-AngII rats also had increased values of U-NOx, systemic and urinary total antioxidant status (TAS), urinary H2O2 and plasma urea, as well as reduced P-ADMA and unaltered urinary isoprostanes. Plasma Pro was inversely correlated with P-ADMA (r = -0.52, p = 0.0009) and positively correlated with urinary TAS (r = 0.55, p = 0.0005) which, in turn, was inversely correlated with P-ADMA (r = -0.56, p = 0.0004). Furthermore, urinary H2O2 values decreased across P-ADMA tertiles (p for linear trend = 0.023). These results suggest that Pro reduces P-ADMA levels and improves redox status, thereby increasing NO bioavailability and counteracting the AngII-induced SBP rise. H2O2 and TAS modulation by Pro may contribute to the reduced P-ADMA concentration.
- Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: a systematic analysis for the Global Burden of Disease Study 2017Publication . GBD 2017 SDG CollaboratorsBackground: Efforts to establish the 2015 baseline and monitor early implementation of the UN Sustainable Development Goals (SDGs) highlight both great potential for and threats to improving health by 2030. To fully deliver on the SDG aim of “leaving no one behind,” it is increasingly important to examine the health-related SDGs beyond national-level estimates. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017), we measured progress on 41 of 52 health-related SDG indicators and estimated the health-related SDG index for 195 countries and territories for the period 1990–2017, projected indicators to 2030, and analyzed global attainment. Methods: We measured progress on 41 health-related SDG indicators from 1990 to 2017, an increase of four indicators since GBD 2016 (new indicators were health worker density, sexual violence by non-intimate partners, population census status, and prevalence of physical and sexual violence [reported separately]). We also improved the measurement of several previously reported indicators. We constructed national-level estimates and, for a subset of health-related SDGs, examined indicator-level differences by sex and Socio-demographic Index (SDI) quintile. We also did subnational assessments of performance for selected countries. To construct the health-related SDG index, we transformed the value for each indicator on a scale of 0–100, with 0 as the 2.5th percentile and 100 as the 97.5th percentile of 1,000 draws calculated from 1990 to 2030, and took the geometric mean of the scaled indicators by target. To generate projections through 2030, we used a forecasting framework that drew estimates from the broader GBD study and used weighted averages of indicator-specific and country-specific annualized rates of change from 1990 to 2017 to inform future estimates. We assessed attainment of indicators with defined targets in two ways: first, using mean values projected for 2030, and then using the probability of attainment in 2030 calculated from 1,000 draws. We also did a global attainment analysis of the feasibility of attaining SDG targets on the basis of past trends. Using 2015 global averages of indicators with defined SDG targets, we calculated the global annualized rates of change required from 2015 to 2030 to meet these targets, and then identified in what percentiles the required global annualized rates of change fell in the distribution of country-level rates of change from 1990 to 2015. We took the mean of these global percentile values across indicators and applied the past rate of change at this mean global percentile to all health-related SDG indicators, irrespective of target definition, to estimate the equivalent 2030 global average value and percentage change from 2015 to 2030 for each indicator. Findings: The global median health-related SDG index in 2017 was 59.4 (IQR 35.4–67.3), ranging from a low of 11.6 (95% uncertainty interval 9.6–14.0) to a high of 84.9 (83.1–86.7). SDG index values in countries assessed at the subnational level varied substantially, particularly in China and India, although scores in Japan and the UK were more homogeneous. Indicators also varied by SDI quintile and sex, with males having worse outcomes than females for non-communicable disease (NCD) mortality, alcohol use, and smoking, among others. Most countries were projected to have a higher health-related SDG index in 2030 than in 2017, while country-level probabilities of attainment by 2030 varied widely by indicator. Under-5 mortality, neonatal mortality, maternal mortality ratio, and malaria indicators had the most countries with at least 95% probability of target attainment. Other indicators, including NCD mortality and suicide mortality, had no countries projected to meet corresponding SDG targets on the basis of projected mean values for 2030 but showed some probability of attainment by 2030. For 14 indicators, including child malnutrition, several infectious diseases, and most violence measures, the annualized rates of change required to meet SDG targets far exceeded the pace of progress achieved by any country in the recent past. We found that applying the mean global annualized rate of change to indicators without defined targets would equate to about 19% and 22% reductions in global smoking and alcohol consumption, respectively; a 47% decline in adolescent birth rates; and a more than 85% increase in health worker density per 1,000 population by 2030. Interpretation: The GBD study offers a unique, robust platform for monitoring the health-related SDGs across demographic and geographic dimensions. Our findings underscore the importance of increased collection and analysis of disaggregated data and highlight where more deliberate design or targeting of interventions could accelerate progress in attaining the SDGs. Current projections show that many health-related SDG indicators, NCDs, NCD-related risks, and violence-related indicators will require a concerted shift away from what might have driven past gains—curative interventions in the case of NCDs—toward multisectoral, prevention-oriented policy action and investments to achieve SDG aims. Notably, several targets, if they are to be met by 2030, demand a pace of progress that no country has achieved in the recent past. The future is fundamentally uncertain, and no model can fully predict what breakthroughs or events might alter the course of the SDGs. What is clear is that our actions—or inaction—today will ultimately dictate how close the world, collectively, can get to leaving no one behind by 2030.
