Browsing by Issue Date, starting with "2017-05-27"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Alpha-thalassemia due to novel deletions and complex rearrangements in the subtelomeric region of chromosome 16pPublication . Ferrão, José; Silva, Marisa; Gonçalves, Lúcia; Gomes, Susana; Loureiro, Pedro; Coelho, Andreia; Miranda, Armandina; Seuanes, Filomena; Batalha Reis, Ana; Valtonen-André, Camila; Sonesson, Annika; Pina, Francisca; Maia, Raquel; Kjollerstrom, Paula; Monteiro, Estela; F. Lacerda, João; Lavinha, João; Gonçalves, João; Faustino, PaulaIntroduction: Inherited deletions removing the α-globin genes and/or their upstream regulatory elements (MCSs) give rise to alpha-thalassemia, one of the most common genetic recessive disorders worldwide. The pathology is characterized by microcytic hypochromic anemia due to reduction of the α-globin chain synthesis, which are essential for hemoglobin tetramerization. Material and Methods: In order to clarify the suggestive α-thalassemia phenotype in eleven patients, we performed Multiplex Ligation-dependent Probe Amplification with commercial and synthetic probes, gap-PCR, and Sanger sequencing to search for deletions in the subtelomeric region of chromosome 16p. Results: We have identified six distinct large deletions, three of them novel, and one indel. The deletions range from approximately 3.3 to 323 kb, and i) remove the whole α-globin cluster; or ii) remove exclusively the upstream regulatory elements leaving the α-globin genes structurally intact. The indel consists in the loss of MCS-R2 (HS-40), which is the most important distal regulatory element for the α-globin gene expression, and the insertion of 39 nt, seemingly resulting from a complex rearrangement involving two DNA segments (probably from chromosome 3q), bridging the deletion breakpoints with a CC-bp orphan sequence in between. Finally, in one patient no α-globin deletion or point mutation were found. This patient revealed to have acquired alpha-thalassemia associated with a myelodysplastic syndrome. Conclusions: Our study widens the spectrum of molecular lesions by which α-thalassemia may occur and emphasizes the importance of diagnosing large α0-deletions to provide patients with appropriate genetic counseling.
- The mechanism through which nonsense mutations are recognized as premature translation-termination codonsPublication . Onofre, Claudia; Menezes, Juliane; Peixeiro, Isabel; Barbosa, Cristina; Romão, LuísaAbout one third of the gene mutations found in human genetic disorders, including cancer, result in premature termination codons (PTCs) and the rapid degradation of their mRNAs by nonsense-mediated decay (NMD). NMD controls the quality of eukaryotic gene expression. The strength of the NMD response appears to reflect multiple determinants on a target mRNA. We have reported that human mRNAs with a PTC in close proximity to the translation initiation codon (AUG-proximal PTC), and thus, with a short open reading frame, can substantially escape NMD. Our data support a model in which cytoplasmic poly(A)-binding protein 1 (PABPC1) is brought into close proximity with an AUG-proximal PTC via interactions with the translation initiation complexes. This proximity of PABPC1 to the AUG-proximal PTC allows PABPC1 to interact with eRF3 with a consequent enhancement of the release reaction and repression of the NMD response. Here, we provide strong evidence that the eIF3 is involved in delivering eIF4G-associated PABPC1 into the vicinity of the AUG-proximal PTC. In addition, we dissect the biochemical interactions of the eIF3 subunits in bridging PABPC1/eIF4G complex to the 40S ribosomal subunit. Together, our data provide a framework for understanding the mechanistic details of PTC definition and mRNA translation initiation.
