Browsing by Author "Vicedo-Cabrera, Ana M."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Ambient carbon monoxide and daily mortality: a global time-series study in 337 citiesPublication . Chen, Kai; Breitner, Susanne; Wolf, Kathrin; Stafoggia, Massimo; Sera, Francesco; Vicedo-Cabrera, Ana M.; Guo, Yuming; Tong, Shilu; Lavigne, Eric; Matus, Patricia; Valdés, Nicolás; Kan, Haidong; Jaakkola, Jouni J.K.; Ryti, Niilo R.I.; Huber, Veronika; Scortichini, Matteo; Hashizume, Masahiro; Honda, Yasushi; Nunes, Baltazar; Madureira, Joana; Holobâcă, Iulian Horia; Fratianni, Simona; Kim, Ho; Lee, Whanhee; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S-; Guo, Yue-Liang Leon; Chen, Bing-Yu; Li, Shanshan; Milojevic, Ai; Zanobetti, Antonella; Schwartz, Joel; Bell, Michelle L-; Gasparrini, Antonio; Schneider, AlexandraBackground: Epidemiological evidence on short-term association between ambient carbon monoxide (CO) and mortality is inconclusive and limited to single cities, regions, or countries. Generalisation of results from previous studies is hindered by potential publication bias and different modelling approaches. We therefore assessed the association between short-term exposure to ambient CO and daily mortality in a multicity, multicountry setting. Methods: We collected daily data on air pollution, meteorology, and total mortality from 337 cities in 18 countries or regions, covering various periods from 1979 to 2016. All included cities had at least 2 years of both CO and mortality data. We estimated city-specific associations using confounder-adjusted generalised additive models with a quasi-Poisson distribution, and then pooled the estimates, accounting for their statistical uncertainty, using a random-effects multilevel meta-analytical model. We also assessed the overall shape of the exposure-response curve and evaluated the possibility of a threshold below which health is not affected. Findings: Overall, a 1 mg/m3 increase in the average CO concentration of the previous day was associated with a 0·91% (95% CI 0·32-1·50) increase in daily total mortality. The pooled exposure-response curve showed a continuously elevated mortality risk with increasing CO concentrations, suggesting no threshold. The exposure-response curve was steeper at daily CO levels lower than 1 mg/m3, indicating greater risk of mortality per increment in CO exposure, and persisted at daily concentrations as low as 0·6 mg/m3 or less. The association remained similar after adjustment for ozone but was attenuated after adjustment for particulate matter or sulphur dioxide, or even reduced to null after adjustment for nitrogen dioxide. Interpretation: This international study is by far the largest epidemiological investigation on short-term CO-related mortality. We found significant associations between ambient CO and daily mortality, even at levels well below current air quality guidelines. Further studies are warranted to disentangle its independent effect from other traffic-related pollutants.
- Ambient particulate air pollution and daily mortality in 652 citiesPublication . Liu, Cong; Chen, Renjie; Sera, Francesco; Vicedo-Cabrera, Ana M.; Guo, Yuming; Tong, Shilu; Coelho, Micheline S.Z.S.; Saldiva, Paulo H.N.; Lavigne, Eric; Matus, Patricia; Valdes Ortega, Nicolas; Osorio Garcia, Samuel; Pascal, Mathilde; Stafoggia, Massimo; Scortichini, Matteo; Hashizume, Masahiro; Honda, Yasushi; Hurtado-Díaz, Magali; Cruz, Julio; Nunes, Baltazar; Teixeira, João P.; Kim, Ho; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Guo, Yue-Leon; Chen, Bing-Yu; Bell, Michelle L.; Wright, Caradee Y.; Scovronick, Noah; Garland, Rebecca M.; Milojevic, Ai; Kyselý, Jan; Urban, Aleš; Orru, Hans; Indermitte, Ene; Jaakkola, Jouni J.K.; Ryti, Niilo R.I.; Katsouyanni, Klea; Analitis, Antonis; Zanobetti, Antonella; Schwartz, Joel; Chen, Jianmin; Wu, Tangchun; Cohen, Aaron; Gasparrini, Antonio; Kan, HaidongThe systematic evaluation of the results of time-series studies of air pollution is challenged by differences in model specification and publication bias. We evaluated the associations of inhalable particulate matter (PM) with an aerodynamic diameter of 10 μm or less (PM10) and fine PM with an aerodynamic diameter of 2.5 μm or less (PM2.5) with daily all-cause, cardiovascular, and respiratory mortality across multiple countries or regions. Daily data on mortality and air pollution were collected from 652 cities in 24 countries or regions. We used overdispersed generalized additive models with random-effects meta-analysis to investigate the associations. Two-pollutant models were fitted to test the robustness of the associations. Concentration-response curves from each city were pooled to allow global estimates to be derived. On average, an increase of 10 μg per cubic meter in the 2-day moving average of PM10 concentration, which represents the average over the current and previous day, was associated with increases of 0.44% (95% confidence interval [CI], 0.39 to 0.50) in daily all-cause mortality, 0.36% (95% CI, 0.30 to 0.43) in daily cardiovascular mortality, and 0.47% (95% CI, 0.35 to 0.58) in daily respiratory mortality. The corresponding increases in daily mortality for the same change in PM2.5 concentration were 0.68% (95% CI, 0.59 to 0.77), 0.55% (95% CI, 0.45 to 0.66), and 0.74% (95% CI, 0.53 to 0.95). These associations remained significant after adjustment for gaseous pollutants. Associations were stronger in locations with lower annual mean PM concentrations and higher annual mean temperatures. The pooled concentration-response curves showed a consistent increase in daily mortality with increasing PM concentration, with steeper slopes at lower PM concentrations. Our data show independent associations between short-term exposure to PM10 and PM2.5 and daily all-cause, cardiovascular, and respiratory mortality in more than 600 cities across the globe. These data reinforce the evidence of a link between mortality and PM concentration established in regional and local studies. (Funded by the National Natural Science Foundation of China and others).
- Comparison of weather station and climate reanalysis data for modelling temperature-related mortalityPublication . Mistry, Malcolm N.; Schneider, Rochelle; Masselot, Pierre; Royé, Dominic; Armstrong, Ben; Kyselý, Jan; Orru, Hans; Sera, Francesco; Tong, Shilu; Lavigne, Éric; Urban, Aleš; Madureira, Joana; García-León, David; Ibarreta, Dolores; Ciscar, Juan-Carlos; Feyen, Luc; de Schrijver, Evan; de Sousa Zanotti Stagliorio Coelho, Micheline; Pascal, Mathilde; Tobias, Aurelio; Alahmad, Barrak; Abrutzky, Rosana; Saldiva, Paulo Hilario Nascimento; Correa, Patricia Matus; Orteg, Nicolás Valdés; Kan, Haidong; Osorio, Samuel; Indermitte, Ene; Jaakkola, Jouni J.K.; Ryti, Niilo; Schneider, Alexandra; Huber, Veronika; Katsouyanni, Klea; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Michelozzi, Paola; de’Donato, Francesca; Hashizume, Masahiro; Kim, Yoonhee; Diaz, Magali Hurtado; De la Cruz Valencia, César; Overcenco, Ala; Houthuijs, Danny; Ameling, Caroline; Rao, Shilpa; Seposo, Xerxes; Nunes, Baltazar; Holobaca, Iulian-Horia; Kim, Ho; Lee, Whanhee; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Guo, Yue-Liang Leon; Chen, Bing-Yu; Colistro, Valentina; Zanobetti, Antonella; Schwartz, Joel; Dang, Tran Ngoc; Van Dung, Do; Guo, Yuming; Vicedo-Cabrera, Ana M.; Gasparrini, AntonioEpidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data. Our findings show that reanalysis temperature from the last ERA5 products generally compare well to station observations, with similar non-optimal temperature-related risk estimates. However, the analysis offers some indication of lower performance in tropical regions, with a likely underestimation of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure variables in epidemiological analyses of temperature-related risk.
- Ozone-related acute excess mortality projected to increase in the absence of climate and air quality controls consistent with the Paris AgreementPublication . Domingo, Nina G.G.; Fiore, Arlene M.; Lamarque, Jean-Francois; Kinney, Patrick L.; Jiang, Leiwen; Gasparrini, Antonio; Breitner, Susanne; Lavigne, Eric; Madureira, Joana; Masselot, Pierre; Silva, Susana das Neves Pereira da; Sheng Ng, Chris Fook; Kyselý, Jan; Guo, Yuming; Tong, Shilu; Kan, Haidong; Urban, Aleš; Orru, Hans; Maasikmets, Marek; Pascal, Mathilde; Katsouyanni, Klea; Samoli, Evangelia; Scortichini, Matteo; Stafoggia, Massimo; Hashizume, Masahiro; Alahmad, Barrak; Diaz, Magali Hurtado; De la Cruz Valencia, César; Scovronick, Noah; Garland, Rebecca M.; Kim, Ho; Lee, Whanhee; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Guo, Yue Leon; Pan, Shih-Chun; Colistro, Valentina; Bell, Michelle; Zanobetti, Antonella; Schwartz, Joel; Schneider, Alexandra; Vicedo-Cabrera, Ana M.; Chen, KaiShort-term exposure to ground-level ozone in cities is associated with increased mortality and is expected to worsen with climate and emission changes. However, no study has yet comprehensively assessed future ozone-related acute mortality across diverse geographic areas, various climate scenarios, and using CMIP6 multi-model ensembles, limiting our knowledge on future changes in global ozone-related acute mortality and our ability to design targeted health policies. Here, we combine CMIP6 simulations and epidemiological data from 406 cities in 20 countries or regions. We find that ozone-related deaths in 406 cities will increase by 45 to 6,200 deaths/year between 2010 and 2014 and between 2050 and 2054, with attributable fractions increasing in all climate scenarios (from 0.17% to 0.22% total deaths), except the single scenario consistent with the Paris Climate Agreement (declines from 0.17% to 0.15% total deaths). These findings stress the need for more stringent air quality regulations, as current standards in many countries are inadequate.
- Rapid climate action is needed: comparing heat vs. COVID-19-related mortalityPublication . Batibeniz, Fulden; Seneviratne, Sonia I.; Jha, Srinidhi; Ribeiro, Andreia; Suarez Gutierrez, Laura; Raible, Christoph C.; Malhotra, Avni; Armstrong, Ben; Bell, Michelle L.; Lavigne, Eric; Gasparrini, Antonio; Guo, Yuming; Hashizume, Masahiro; Masselot, Pierre; das Neves Pereira da Silva, Susana; Royé, Dominic; Sera, Francesco; Tong, Shilu; Urban, Aleš; Vicedo-Cabrera, Ana M.The impacts of climate change on human health are often underestimated or perceived to be in a distant future. Here, we present the projected impacts of climate change in the context of COVID-19, a recent human health catastrophe. We compared projected heat mortality with COVID-19 deaths in 38 cities worldwide and found that in half of these cities, heat-related deaths could exceed annual COVID-19 deaths in less than ten years (at + 3.0 °C increase in global warming relative to preindustrial). In seven of these cities, heat mortality could exceed COVID-19 deaths in less than five years. Our results underscore the crucial need for climate action and for the integration of climate change into public health discourse and policy.
- Regional variation in the role of humidity on city-level heat-related mortalityPublication . Guo, Qiang; Mistry, Malcolm N.; Zhou, Xudong; Zhao, Gang; Kino, Kanon; Wen, Bo; Yoshimura, Kei; Satoh, Yusuke; Cvijanovic, Ivana; Kim, Yoonhee; Ng, Chris Fook Sheng; Vicedo-Cabrera, Ana M.; Armstrong, Ben; Urban, Aleš; Katsouyanni, Klea; Masselot, Pierre; Tong, Shilu; Sera, Francesco; Huber, Veronika; Bell, Michelle L.; Kyselý, Jan; Gasparrini, Antonio; Hashizume, Masahiro; Oki, Taikan; Abrutzky, Rosana; Guo, Yuming; de Sousa Zanotti Stagliorio Coelho, Micheline; Nascimento Saldiva, Paulo Hilario; Lavigne, Eric; Ortega, Nicolás Valdés; Correa, Patricia Matus; Kan, Haidong; Osorio, Samuel; Roye, Dominic; Indermitte, Ene; Orru, Hans; Jaakkola, Jouni J K.; Ryti, Niilo; Pascal, Mathilde; Schneider, Alexandra; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Zeka, Ariana; Goodman, Patrick; de'Donato, Francesca; Michelozzi, Paola; Alahmad, Barrak; De la Cruz Valencia, César; Hurtado Diaz, Magali; Overcenco, Ala; Ameling, Caroline; Houthuijs, Danny; Rao, Shilpa; Carrasco, Gabriel; Seposo, Xerxes; Madureira, Joana; Silva, Susana; Holobaca, Iulian-Horia; Acquaotta, Fiorella; Scovronick, Noah; Kim, Ho; Lee, Whanhee; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Ragettli, Martina S.; Pan, Shih-Chun; Guo, Yue Leon; Li, Shanshan; Schneider, Rochelle; Colistro, Valentina; Zanobetti, Antonella; Schwartz, Joel; Van Dung, Do; Ngoc Dang, Tran; Honda, YasushiThe rising humid heat is regarded as a severe threat to human survivability, but the proper integration of humid heat into heat-health alerts is still being explored. Using state-of-the-art epidemiological and climatological datasets, we examined the association between multiple heat stress indicators (HSIs) and daily human mortality in 739 cities worldwide. Notable differences were observed in the long-term trends and timing of heat events detected by HSIs. Air temperature (Tair) predicts heat-related mortality well in cities with a robust negative Tair-relative humidity correlation (CT-RH). However, in cities with near-zero or weak positive CT-RH, HSIs considering humidity provide enhanced predictive power compared to Tair. Furthermore, the magnitude and timing of heat-related mortality measured by HSIs could differ largely from those associated with Tair in many cities. Our findings provide important insights into specific regions where humans are vulnerable to humid heat and can facilitate the further enhancement of heat-health alert systems.
- Short term association between ozone and mortality: global two stage time series study in 406 locations in 20 countriesPublication . Vicedo-Cabrera, Ana M.; Sera, Francesco; Liu, Cong; Armstrong, Ben; Milojevic, A.i.; Guo, Yuming; Tong, Shilu; Lavigne, Eric; Kyselý, Jan; Urban, Aleš; Orru, Hans; Indermitte, Ene; Pascal, Mathilde; Huber, Veronika; Schneider, Alexandra; Katsouyanni, Klea; Samoli, Evangelia; Stafoggia, Massimo; Scortichini, Matteo; Hashizume, Masahiro; Honda, Yasushi; Ng, Chris Fook Sheng; Hurtado-Diaz, Magali; Cruz, Julio; Silva, Susana; Madureira, Joana; Scovronick, Noah; Garland, Rebecca M.; Kim, Ho; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Röösli, Martin; Guo, Yue-Liang Leon; Chen, Bing-Yu; Zanobetti, Antonella; Schwartz, Joel; Bell, Michelle L.; Kan, Haidong; Gasparrini, AntonioObjective: To assess short term mortality risks and excess mortality associated with exposure to ozone in several cities worldwide. Design: Two stage time series analysis. Setting: 406 cities in 20 countries, with overlapping periods between 1985 and 2015, collected from the database of Multi-City Multi-Country Collaborative Research Network. Population: Deaths for all causes or for external causes only registered in each city within the study period. MAIN OUTCOME MEASURES: Daily total mortality (all or non-external causes only). Results: A total of 45 165 171 deaths were analysed in the 406 cities. On average, a 10 µg/m3 increase in ozone during the current and previous day was associated with an overall relative risk of mortality of 1.0018 (95% confidence interval 1.0012 to 1.0024). Some heterogeneity was found across countries, with estimates ranging from greater than 1.0020 in the United Kingdom, South Africa, Estonia, and Canada to less than 1.0008 in Mexico and Spain. Short term excess mortality in association with exposure to ozone higher than maximum background levels (70 µg/m3) was 0.26% (95% confidence interval 0.24% to 0.28%), corresponding to 8203 annual excess deaths (95% confidence interval 3525 to 12 840) across the 406 cities studied. The excess remained at 0.20% (0.18% to 0.22%) when restricting to days above the WHO guideline (100 µg/m3), corresponding to 6262 annual excess deaths (1413 to 11 065). Above more lenient thresholds for air quality standards in Europe, America, and China, excess mortality was 0.14%, 0.09%, and 0.05%, respectively. Conclusions: Results suggest that ozone related mortality could be potentially reduced under stricter air quality standards. These findings have relevance for the implementation of efficient clean air interventions and mitigation strategies designed within national and international climate policies.
