Browsing by Author "Santos, Agostinho"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Brain expression of inflammatory mediators in Mesial Temporal Lobe Epilepsy patientsPublication . Leal, Bárbara; Chaves, João; Carvalho, Cláudia; Rangel, Rui; Santos, Agostinho; Bettencourt, Andreia; Lopes, João; Ramalheira, João; Silva, Berta M.; da Silva, António Martins; Costa, Paulo P.Neuroinflammation may be central in epileptogenesis. In this study we analysed inflammatory reaction markers in brain tissue of Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis (MTLE-HS) patients. TLR4, IL-1β and IL-10 gene expression as well as the presence of activated HLA-DR+ microglia was evaluated in 23 patients and 10 cadaveric controls. Inflammation characterized by the presence of HLA-DR+microglia and TLR4, IL-1β overexpression was evident in hippocampus and anterior temporal cortex of MTLE-HS patients. Anti-inflammatory IL-10 was also overexpressed in MTLE-HS patients. Our results show that hippocampal neuroinflammation extends beyond lesional limits, as far as the anterior temporal cortex.
- Epilepsy progression is associated with cumulative DNA methylation changes in inflammatory genesPublication . Martins-Ferreira, Ricardo; Leal, Bárbara; Chaves, João; Li, Tianlu; Ciudad, Laura; Rangel, Rui; Santos, Agostinho; Martins da Silva, António; Pinho Costa, Paulo; Ballestar, EstebanMesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) is the most common focal epilepsy in adults. It is characterized by alarming rates of pharmacoresistance. Epileptogenesis is associated with the occurrence of epigenetic alterations, and the few epigenetic studies carried out in MTLE-HS have mainly focused on the hippocampus. In this study, we obtained the DNA methylation profiles from both the hippocampus and anterior temporal neocortex of MTLE-HS patients subjected to resective epilepsy surgery and autopsied non-epileptic controls. We assessed the progressive nature of DNA methylation changes in relation to epilepsy duration. We identified significantly altered hippocampal DNA methylation patterns encompassing multiple pathways known to be involved in epileptogenesis. DNA methylation changes were even more striking in the neocortex, wherein pathogenic pathways and genes were common to both tissues. Most importantly, DNA methylation changes at many genomic sites varied significantly with epilepsy duration. Such progressive changes were associated with inflammation-related genes in the hippocampus. Our results suggest that the neocortex, relatively spared of extensive histopathological damage, may also be involved in epilepsy development. These results also open the possibility that the observed neocortical impairment could represent a preliminary stage of epileptogenesis before the establishment of chronic lesions or a consequence of prolonged seizure exposure. Our two-tissue multi-level characterization of the MTLE-HS DNA methylome suggests the occurrence of a self-propagating inflammatory wave of epigenetic dysregulation.
- Mesial Temporal Lobe Epilepsy (MTLE) Drug-Refractoriness Is Associated With P2X7 Receptors Overexpression in the Human Hippocampus and Temporal Neocortex and May Be Predicted by Low Circulating Levels of miR-22Publication . Guerra Leal, Bárbara; Barros-Barbosa, Aurora; Ferreirinha, Fátima; Chaves, João; Rangel, Rui; Santos, Agostinho; Carvalho, Cláudia; Martins-Ferreira, Ricardo; Samões, Raquel; Freitas, Joel; Lopes, João; Ramalheira, João; Lobo, Maria Graça; Martins da Silva, António; Costa, Paulo P.; Correia-de-Sá, PauloObjective: ATP-gated ionotropic P2X7 receptors (P2X7R) actively participate in epilepsy and other neurological disorders. Neocortical nerve terminals of patients with Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis (MTLE-HS) express higher P2X7R amounts. Overexpression of P2X7R bolsters ATP signals during seizures resulting in glial cell activation, cytokines production, and GABAergic rundown with unrestrained glutamatergic excitation. In a mouse model of status epilepticus, increased expression of P2X7R has been associated with the down-modulation of the non-coding micro RNA, miR-22. MiR levels are stable in biological fluids and normally reflect remote tissue production making them ideal disease biomarkers. Here, we compared P2X7R and miR-22 expression in epileptic brains and in the serum of patients with MTLE-HS, respectively. Methods: Quantitative RT-PCR was used to evaluate the expression of P2X7R in the hippocampus and anterior temporal lobe of 23 patients with MTLE-HS and 10 cadaveric controls. Confocal microscopy and Western blot analysis were performed to assess P2X7R protein amounts. MiR-22 expression was evaluated in cell-free sera of 40 MTLE-HS patients and 48 healthy controls. Results: Nerve terminals of the hippocampus and neocortical temporal lobe of MTLE-HS patients overexpress (p < 0.05) an 85 kDa P2X7R protein whereas the normally occurring 67 kDa receptor protein dominates in the brain of the cadaveric controls. Contrariwise, miR-22 serum levels are diminished (p < 0.001) in MTLE-HS patients compared to age-matched control blood donors, a situation that is more evident in patients requiring multiple (>3) anti-epileptic drug (AED) regimens. Conclusion: Data show that there is an inverse relationship between miR-22 serum levels and P2X7R expression in the hippocampus and neocortex of MTLE-HS patients, which implies that measuring serum miR-22 may be a clinical surrogate of P2X7R brain expression in the MTLE-HS. Moreover, the high area under the ROC curve (0.777; 95% CI 0.629-0.925; p = 0.001) suggests that low miR-22 serum levels may be a sensitive predictor of poor response to AEDs among MTLE-HS patients. Results also anticipate that targeting the miR-22/P2X7R axis may be a good strategy to develop newer AEDs.
