Browsing by Author "Santa, C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Characterization of mitochondrial proteome in a severe case of ETF-QO deficiencyPublication . Rocha, H.; Ferreira, R.; Carvalho, J.; Vitorino, R.; Santa, C.; Lopes, L.; Gregersen, N.; Vilarinho, L.; Amado, F.Multiple acyl-CoA dehydrogenase deficiency (MADD) is a mitochondrial fatty acid oxidation disorder caused by mutations that affect electron transfer flavoprotein (ETF) or ETF:ubiquinone oxidoreductase (ETF-QO) or even due to unidentified disturbances of riboflavin metabolism. Besides all the available data on the molecular basis of FAO disorders, including MADD, the pathophysiological mechanisms underlying clinical phenotype development, namely at the mitochondrial level, are poorly understood. In order to contribute to the elucidation of these mechanisms, we isolated mitochondria from cultured fibroblasts, from a patient with a severe MADD presentation due to ETF-QO deficiency, characterize its mitochondrial proteome and compare it with normal controls. The used approach (2-DE-MS/MS) allowed the positive identification of 287 proteins in both patient and controls, presenting 35 of the significant differences in their relative abundance. Among the differentially expressed are proteins associated to binding/folding functions, mitochondrial antioxidant enzymes as well as proteins associated to apoptotic events. The overexpression of chaperones like Hsp60 or mitochondrial Grp75, antioxidant enzymes and apoptotic proteins reflects the mitochondrial response to a complete absence of ETF-QO. Our study provides a global perspective of the mitochondrial proteome plasticity in a severe case of MADD and highlights the main molecular pathways involved in its pathogenesis.
- Mitochondria proteome profiling: a comparative analysis between gel- and gel-free approachesPublication . Ferreira, R.; Rocha, H.; Almeida, V.; Padrão, A.L.; Santa, C.; Vilarinho, L.; Amado, F.; Vitorino, R.Mitochondrial proteomics emerged aiming to disclose the dynamics of mitochondria under various pathophysiological conditions. In the present study we investigated the relative merits of gel-based (2DE and SDS-LC) and gel-free (2D-LC) protein separation approaches and protein identification algorithms (Mascot and Paragon) in the proteome profiling of mitochondria isolated from cultured fibroblasts, a sample traditionally used for diagnosis purposes. Combining data retrieved from 2DE, 2D-LC and SDS-LC and search methods, a total of 696 non-redundant proteins were identified. An overlap of only 19% between the proteins identified by the three different methods was observed when Mascot and Paragon were used. Regarding protein ID, a consistency in the number of identified proteins per sample was noticed for 2DE approach. Independent of the methodological approach chosen, it was noticed that the predominance in mitochondria of hydrophilic proteins with 20-50 kDa and pI 5-6 and 8-9; however, 2D-LC and SDS-LC allowed the enrichment of proteins with a mass below 30 kDa and of basic proteins with pI values above 8. In conclusion, data from the present study highlight the power of integrating different separation technologies and protein identification algorithms.
