Browsing by Author "Rizzo, Caterina"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- 2015/16 I-MOVE/I-MOVE+ multicentre case control study in Europe: moderate vaccine effectiveness estimates against influenza A(H1N1)pdm09 and low estimates against lineage mismatched influenza B among childrenPublication . Kissling, Esther; Valenciano, Marta; Pozo, Francisco; Vilcu, Ana-Maria; Reuss, Annicka; Rizzo, Caterina; Larrauri, Amparo; Horváth, Judit Krisztina; Brytting, Mia; Domegan, Lisa; Korczyńska, Monika; Meijer, Adam; Machado, Ausenda; Ivanciuc, Alina; Višekruna Vučina, Vesna; van der Werf, Sylvie; Schweiger, Brunhilde; Bella, Antonino; Gherasim, Alin; Ferenczi, Annamária; Zakikhany, Katherina; O Donnell, Joan; Paradowska-Stankiewicz, Iwona; Dijkstra, Frederika; Guiomar, Raquel; Lazar, Mihaela; Kurečić Filipović, Sanja; Johansen, Kari; Moren, Alain; I-MOVE/I-MOVE+ study teamBackground:During the 2015/16 influenza season in Europe, the co-circulating influenza viruses were A(H1N1)pdm09 and B/Victoria, which was antigenically distinct from the B/Yamagata component in the trivalent influenza vaccine. Methods:We used the test negative design in a multicentre case–control study in twelve European countries to measure 2015/16 influenza vaccine effectiveness (VE) against medically-attended influenza-like illness (ILI) laboratory-confirmed as influenza. General practitioners swabbed a systematic sample of consulting ILI patients ainfluenza Vaccinend a random sample of influenza positive swabs were sequenced. We calculated adjusted VE against influenza A(H1N1)pdm09, A(H1N1)pdm09 genetic group 6B.1 and influenza B overall and by age group. Results: We included 11,430 ILI patients, of which 2272 were influenza A(H1N1)pdm09 and 2901 were influenza B cases. Overall VE against influenza A(H1N1)pdm09 was 32.9% (95% CI: 15.5-46.7). Among those aged 0–14, 15–64 and ≥65 years VE against A(H1N1)pdm09 was 31.9% (95% CI: -32.3-65.0), 41.4% (95%CI: 20.5-56.7) and 13.2% (95% CI: -38.0-45.3) respectively. Overall VE against influenza A(H1N1)pdm09 genetic group 6B.1 was 32.8% (95%CI: -4.1-56.7). Among those aged 0–14, 15–64 and ≥65 years VE against influenza B was -47.6% (95%CI: -124.9-3.1), 27.3% (95%CI: -4.6-49.4), and 9.3% (95%CI: -44.1-42.9) respectively. Conclusions: VE against influenza A(H1N1)pdm09 and its genetic group 6B.1 was moderate in children and adults, and low among individuals ≥65 years. VE against influenza B was low and heterogeneous among age groups. More information on effects of previous vaccination and previous infection are needed to understand the VE results against influenza B in the context of a mismatched vaccine.
- 2015/16 seasonal vaccine effectiveness against hospitalisation with influenza A(H1N1)pdm09 and B among elderly people in Europe: results from the I-MOVE+ projectPublication . Rondy, Marc; Larrauri, Amparo; Casado, Itziar; Alfonsi, Valeria; Pitigoi, Daniela; Launay, Odile; Syrjänen, Ritva K; Gefenaite, Giedre; Machado, Ausenda; Vučina, Vesna Višekruna; Horváth, Judith Krisztina; Paradowska-Stankiewicz, Iwona; Marbus, Sierk D; Gherasim, Alin; Díaz-González, Jorge Alberto; Rizzo, Caterina; Ivanciuc, Alina E; Galtier, Florence; Ikonen, Niina; Mickiene, Aukse; Gomez, Veronica; Kurečić Filipović, Sanja; Ferenczi, Annamária; Korcinska, Monika R; van Gageldonk-Lafeber, Rianne; I-MOVE+ hospital working group; Valenciano, MartaWe conducted a multicentre test-negative case-control study in 27 hospitals of 11 European countries to measure 2015/16 influenza vaccine effectiveness (IVE) against hospitalised influenza A(H1N1)pdm09 and B among people aged ≥ 65 years. Patients swabbed within 7 days after onset of symptoms compatible with severe acute respiratory infection were included. Information on demographics, vaccination and underlying conditions was collected. Using logistic regression, we measured IVE adjusted for potential confounders. We included 355 influenza A(H1N1)pdm09 cases, 110 influenza B cases, and 1,274 controls. Adjusted IVE against influenza A(H1N1)pdm09 was 42% (95% confidence interval (CI): 22 to 57). It was 59% (95% CI: 23 to 78), 48% (95% CI: 5 to 71), 43% (95% CI: 8 to 65) and 39% (95% CI: 7 to 60) in patients with diabetes mellitus, cancer, lung and heart disease, respectively. Adjusted IVE against influenza B was 52% (95% CI: 24 to 70). It was 62% (95% CI: 5 to 85), 60% (95% CI: 18 to 80) and 36% (95% CI: -23 to 67) in patients with diabetes mellitus, lung and heart disease, respectively. 2015/16 IVE estimates against hospitalised influenza in elderly people was moderate against influenza A(H1N1)pdm09 and B, including among those with diabetes mellitus, cancer, lung or heart diseases.
- Different transmission patterns in the early stages of the influenza A(H1N1)v pandemic: a comparative analysis of 12 European countriesPublication . Flasche, Stefan; Hens, Niel; Boëlle, Pierre-Yves; Mossong, Joël; van Ballegooijen, W. Marijn; Nunes, Baltazar; Rizzo, Caterina; Popovici, Florin; Santa-Olalla, Patricia; Hrubá, Frantiska; Parmakova, Kremena; Baguelin, Marc; van Hoek, Albert Jan; Desenclos, Jean-Claude; Bernillon, Pascale; Cámara, Amparro Larrauri; Wallinga, Jacco; Asikainen, Tommi; White, Peter J.; Edmunds, W. JohnFollowing the emergence of a novel strain of influenza A(H1N1) in Mexico and the United States in April 2009, its epidemiology in Europe during the summer was limited to sporadic and localised outbreaks. Only the United Kingdom experienced widespread transmission declining with school holidays in late July. Using statistical modelling where applicable we explored the following causes that could explain this surprising difference in transmission dynamics: extinction by chance, differences in the susceptibility profile, age distribution of the imported cases, differences in contact patterns, mitigation strategies, school holidays and weather patterns. No single factor was able to explain the differences sufficiently. Hence an additive mixed model was used to model the country-specific weekly estimates of the effective reproductive number using the extinction probability, school holidays and weather patterns as explanatory variables. The average extinction probability, its trend and the trend in absolute humidity were found to be significantly negatively correlated with the effective reproduction number - although they could only explain about 3% of the variability in the model. By comparing the initial epidemiology of influenza A (H1N1) across different European countries, our analysis was able to uncover a possible role for the timing of importations (extinction probability), mixing patterns and the absolute humidity as underlying factors. However, much uncertainty remains. With better information on the role of these epidemiological factors, the control of influenza could be improved.
- Distribution of influenza virus types by age using case-based global surveillance data from twenty-nine countries, 1999-2014Publication . Caini, Saverio; Spreeuwenberg, Peter; Kusznierz, Gabriela F.; Rudi, Juan Manuel; Owen, Rhonda; Pennington, Kate; Wangchuk, Sonam; Gyeltshen, Sonam; Ferreira de Almeida, Walquiria Aparecida; Pessanha Henriques, Cláudio Maierovitch; Njouom, Richard; Vernet, Marie-Astrid; Fasce, Rodrigo A.; Andrade, Winston; Yu, Hongjie; Feng, Luzhao; Yang, Juan; Peng, Zhibin; Lara, Jenny; Bruno, Alfredo; de Mora, Doménica; de Lozano, Celina; Zambon, Maria; Pebody, Richard; Castillo, Leticia; Clara, Alexey W.; Matute, Maria Luisa; Kosasih, Herman; Nurhayati, null; Puzelli, Simona; Rizzo, Caterina; Kadjo, Herve A; Daouda, Coulibaly; Kiyanbekova, Lyazzat; Ospanova, Akerke; Mott, Joshua A.; Emukule, Gideon O.; Heraud, Jean-Michel; Razanajatovo, Norosoa Harline; Barakat, Amal; El Falaki, Fatima; Huang, Sue Q.; Lopez, Liza; Balmaseda, Angel; Moreno, Brechla; Rodrigues, Ana Paula; Guiomar, Raquel; Ang, Li Wei; Lee, Vernon Jian Ming; Venter, Marietjie; Cohen, Cheryl; Badur, Selim; Ciblak, Meral A.; Mironenko, Alla; Holubka, Olha; Bresee, Joseph; Brammer, Lynnette; Hoang, Phuong Vu Mai; Le, Mai Thi Quynh; Fleming, Douglas; Séblain, Clotilde El-Guerche; Schellevis, François; Paget, John; Global Influenza B Study groupBackground: Influenza disease burden varies by age and this has important public health implications. We compared the proportional distribution of different influenza virus types within age strata using surveillance data from twenty-nine countries during 1999-2014 (N=358,796 influenza cases). Methods: For each virus, we calculated a Relative Illness Ratio (defined as the ratio of the percentage of cases in an age group to the percentage of the country population in the same age group) for young children (0-4 years), older children (5-17 years), young adults (18-39 years), older adults (40-64 years), and the elderly (65+ years). We used random-effects meta-analysis models to obtain summary relative illness ratios (sRIRs), and conducted meta-regression and sub-group analyses to explore causes of between-estimates heterogeneity. Results: The influenza virus with highest sRIR was A(H1N1) for young children, B for older children, A(H1N1)pdm2009 for adults, and (A(H3N2) for the elderly. As expected, considering the diverse nature of the national surveillance datasets included in our analysis, between-estimates heterogeneity was high (I2>90%) for most sRIRs. The variations of countries’ geographic, demographic and economic characteristics and the proportion of outpatients among reported influenza cases explained only part of the heterogeneity, suggesting that multiple factors were at play. Conclusions: These results highlight the importance of presenting burden of disease estimates by age group and virus (sub)type.
- Effectiveness of influenza vaccine against influenza A in Europe in seasons of different A(H1N1)pdm09 and the same A(H3N2) vaccine components (2016-17 and 2017-18)Publication . Kissling, Esther; Pozo, Francisco; Buda, Silke; Vilcu, Ana-Maria; Rizzo, Caterina; Gherasim, Alin; Krisztina Horváth, Judit; Brytting, Mia; Domegan, Lisa; Meijer, Adam; Paradowska-Stankiewicz, Iwona; Machado, Ausenda; Višekruna Vučina, Vesna; Lazar, Mihaela; Johansen, Kari; Dürrwald, Ralf; van der Werf, Sylvie; Bella, Antonino; Larrauri, Amparo; Ferenczi, Annamária; Zakikhany, Katherina; O'Donnell, Joan; Dijkstra, Frederika; Bogusz, Joanna; Guiomar, Raquel; Kurečić Filipović, Sanja; Pitigoi, Daniela; Penttinen, Pasi; Valenciano, Marta; Gomez, Veronica; Kislaya, Irina; Nunes, Baltazar; I-MOVE/I-MOVE+ study teamIntroduction: Influenza A(H3N2) viruses predominated in Europe in 2016–17. In 2017–18 A(H3N2) and A(H1N1)pdm09 viruses co-circulated. The A(H3N2) vaccine component was the same in both seasons; while the A(H1N1)pdm09 component changed in 2017–18. In both seasons, vaccine seed A(H3N2) viruses developed adaptations/alterations during propagation in eggs, impacting antigenicity. Methods: We used the test-negative design in a multicentre primary care case-control study in 12 European countries to measure 2016–17 and 2017–18 influenza vaccine effectiveness (VE) against laboratory-confirmed influenza A(H1N1)pdm09 and A(H3N2) overall and by age group. Results: During the 2017–18 season, the overall VE against influenza A(H1N1)pdm09 was 59% (95% CI: 47–69). Among those aged 0–14, 15–64 and ≥65 years, VE against A(H1N1)pdm09 was 64% (95% CI: 37–79), 50% (95% CI: 28–66) and 66% (95% CI: 42–80), respectively. Overall VE against influenza A(H3N2) was 28% (95% CI: 17–38) in 2016–17 and 13% (95% CI: -15 to 34) in 2017–18. Among 0–14-year-olds VE against A(H3N2) was 28% (95%CI: -10 to 53) and 29% (95% CI: -87 to 73), among 15–64-year-olds 34% (95% CI: 18–46) and 33% (95% CI: -3 to 56) and among those aged ≥65 years 15% (95% CI: -10 to 34) and -9% (95% CI: -74 to 32) in 2016–17 and 2017–18, respectively. Conclusions: Our study suggests the new A(H1N1)pdm09 vaccine component conferred good protection against circulating strains, while VE against A(H3N2) was <35% in 2016–17 and 2017–18. The egg propagation derived antigenic mismatch of the vaccine seed virus with circulating strains may have contributed to this low effectiveness. A(H3N2) seed viruses for vaccines in subsequent seasons may be subject to the same adaptations; in years with lower than expected VE, recommendations of preventive measures other than vaccination should be given in a timely manner.
- Estimates of pandemic influenza vaccine effectiveness in Europe, 2009-2010: results of Influenza Monitoring Vaccine Effectiveness in Europe (I-MOVE) multicentre case-control studyPublication . Valenciano, Marta; Kissling, Esther; Cohen, Jean-Marie; Oroszi, Beatrix; Barret, Anne-Sophie; Rizzo, Caterina; Nunes, Baltazar; Pitigoi, Daniela; Larrauri Cámara, Amparro; Mosnier, Anne; Horvath, Judith K.; O'Donnell, Joan; Bella, Antonino; Guiomar, Raquel; Lupulescu, Emilia; Savulescu, Camelia; Ciancio, Bruno C.; Kramarz, Piotr; Moren, AlainA multicentre case-control study based on sentinel practitioner surveillance networks from seven European countries was undertaken to estimate the effectiveness of 2009-2010 pandemic and seasonal influenza vaccines against medically attended influenza-like illness (ILI) laboratory-confirmed as pandemic influenza A (H1N1) (pH1N1).
- Exploring the effect of previous inactivated influenza vaccination on seasonal influenza vaccine effectiveness against medically attended influenza: results of the European I-MOVE multicentre test-negative case-control study, 2011/2012-2016/2017Publication . Valenciano, Marta; Kissling, Esther; Larrauri, Amparo; Nunes, Baltazar; Pitigoi, Daniela; O'Donnell, Joan; Reuss, Annicka; Horváth, Judit Krisztina; Paradowska-Stankiewicz, Iwona; Rizzo, Caterina; Falchi, Alessandra; Daviaud, Isabelle; Brytting, Mia; Meijer, Adam; Kaic, Bernard; Gherasim, Alin; Machado, Ausenda; Ivanciuc, Alina; Domegan, Lisa; Schweiger, Brunhilde; Ferenczi, Annamária; Korczyńska, Monika; Bella, Antonino; Vilcu, Ana-Maria; Mosnier, Anne; Zakikhany, Katherina; de Lange, Marit; Kurečić Filipovićović, Sanja; Johansen, Kari; Moren, Alain; I-MOVE primary care multicentre case-control teamBACKGROUND: Results of previous influenza vaccination effects on current season influenza vaccine effectiveness (VE) are inconsistent. OBJECTIVES: To explore previous influenza vaccination effects on current season VE among population targeted for vaccination. METHODS: We used 2011/2012 to 2016/2017 I-MOVE primary care multicentre test-negative data. For each season, we compared current season adjusted VE (aVE) between individuals vaccinated and unvaccinated in previous season. Using unvaccinated in both seasons as a reference, we then compared aVE between vaccinated in both seasons, current only, and previous only. RESULTS: We included 941, 2645 and 959 influenza-like illness patients positive for influenza A(H1N1)pdm09, A(H3N2) and B, respectively, and 5532 controls. In 2011/2012, 2014/2015 and 2016/2017, A(H3N2) aVE point estimates among those vaccinated in previous season were -68%, -21% and -19%, respectively; among unvaccinated in previous season, these were 33%, 48% and 46%, respectively (aVE not computable for influenza A(H1N1)pdm09 and B). Compared to current season vaccination only, VE for both seasons' vaccination was (i) similar in two of four seasons for A(H3N2) (absolute difference [ad] 6% and 8%); (ii) lower in three of four seasons for influenza A(H1N1)pdm09 (ad 18%, 26% and 29%), in two seasons for influenza A(H3N2) (ad 27% and 39%) and in two of three seasons for influenza B (ad 26% and 37%); (iii) higher in one season for influenza A(H1N1)pdm09 (ad 20%) and influenza B (ad 24%). CONCLUSIONS: We did not identify any pattern of previous influenza vaccination effect. Prospective cohort studies documenting influenza infections, vaccinations and vaccine types are needed to understand previous influenza vaccinations' effects.
- I-MOVE multicentre case-control study 2010/11 to 2014/15: Is there within-season waning of influenza type/subtype vaccine effectiveness with increasing time since vaccination?Publication . Kissling, Esther; Nunes, Baltazar; Robertson, Chris; Valenciano, Marta; Reuss, Annicka; Larrauri, Amparo; Cohen, Jean Marie; Oroszi, Beatrix; Rizzo, Caterina; Machado, Ausenda; Pitigoi, Daniela; Domegan, Lisa; Paradowska-Stankiewicz, Iwona; Buchholz, Udo; Gherasim, Alin; Daviaud, Isabelle; Horváth, Judit Krisztina; Bella, Antonino; Lupulescu, Emilia; O Donnell, Joan; Korczyńska, Monika; Moren, Alain; I-MOVE case–control study teamSince the 2008/9 influenza season, the I-MOVE multicentre case-control study measures influenza vaccine effectiveness (VE) against medically-attended influenza-like-illness (ILI) laboratory confirmed as influenza. In 2011/12, European studies reported a decline in VE against influenza A(H3N2) within the season. Using combined I-MOVE data from 2010/11 to 2014/15 we studied the effects of time since vaccination on influenza type/subtype-specific VE. We modelled influenza type/subtype-specific VE by time since vaccination using a restricted cubic spline, controlling for potential confounders (age, sex, time of onset, chronic conditions). Over 10,000 ILI cases were included in each analysis of influenza A(H3N2), A(H1N1)pdm09 and B; with 4,759, 3,152 and 3,617 influenza positive cases respectively. VE against influenza A(H3N2) reached 50.6% (95% CI: 30.0-65.1) 38 days after vaccination, declined to 0% (95% CI: -18.1-15.2) from 111 days onwards. At day 54 VE against influenza A(H1N1)pdm09 reached 55.3% (95% CI: 37.9-67.9) and remained between this value and 50.3% (95% CI: 34.8-62.1) until season end. VE against influenza B declined from 70.7% (95% CI: 51.3-82.4) 44 days after vaccination to 21.4% (95% CI: -57.4-60.8) at season end. To assess if vaccination campaign strategies need revising more evidence on VE by time since vaccination is urgently needed.
- Low 2016/17 season vaccine effectiveness against hospitalised influenza A(H3N2) among elderly: awareness warranted for 2017/18 seasonPublication . Rondy, Marc; Gherasim, Alin; Casado, Itziar; Launay, Odile; Rizzo, Caterina; Pitigoi, Daniela; Mickiene, Aukse; Marbus, Sierk D; Machado, Ausenda; Syrjänen, Ritva K; Pem-Novose, Iva; Horváth, Judith Krisztina; Larrauri, Amparo; Castilla, Jesús; Vanhems, Philippe; Alfonsi, Valeria; Ivanciuc, Alina E; Kuliese, Monika; van Gageldonk-Lafeber, Rianne; Gomez, Veronica; Ikonen, Niina; Lovric, Zvjezdana; Ferenczi, Annamária; Moren, Alain; I-MOVE+ hospital working groupIn a multicentre European hospital study we measured influenza vaccine effectiveness (IVE) against A(H3N2) in 2016/17. Adjusted IVE was 17% (95% confidence interval (CI): 1 to 31) overall; 25% (95% CI: 2 to 43) among 65-79-year-olds and 13% (95% CI: -15 to 30) among those ≥ 80 years. As the A(H3N2) vaccine component has not changed for 2017/18, physicians and public health experts should be aware that IVE could be low where A(H3N2) viruses predominate.
- Repeated seasonal influenza vaccination among elderly in Europe: effects on laboratory confirmed hospitalised influenzaPublication . Rondy, Marc; Launay, Odile; Castilla, Jesus; Costanzo, Simona; Puig-Barberà, Joan; Gefenaite, Giedre; Larrauri, Amparo; Rizzo, Caterina; Pitigoi, Daniela; Syrjänen, Ritva K.; Machado, Ausenda; Kurečić Filipović, Sanja; Krisztina Horváth, Judit; Paradowska-Stankiewicz, Iwona; Marbus, Sierk; InNHOVE/I-MOVE+working group, Alain; MorenIn Europe, annual influenza vaccination is recommended to elderly. From 2011 to 2014 and in 2015-16, we conducted a multicentre test negative case control study in hospitals of 11 European countries to measure influenza vaccine effectiveness (IVE) against laboratory confirmed hospitalised influenza among people aged ≥65years. We pooled four seasons data to measure IVE by past exposures to influenza vaccination. We swabbed patients admitted for clinical conditions related to influenza with onset of severe acute respiratory infection ≤7days before admission. Cases were patients RT-PCR positive for influenza virus and controls those negative for any influenza virus. We documented seasonal vaccination status for the current season and the two previous seasons. We recruited 5295 patients over the four seasons, including 465A(H1N1)pdm09, 642A(H3N2), 278 B case-patients and 3910 controls. Among patients unvaccinated in both previous two seasons, current seasonal IVE (pooled across seasons) was 30% (95%CI: -35 to 64), 8% (95%CI: -94 to 56) and 33% (95%CI: -43 to 68) against influenza A(H1N1)pdm09, A(H3N2) and B respectively. Among patients vaccinated in both previous seasons, current seasonal IVE (pooled across seasons) was -1% (95%CI: -80 to 43), 37% (95%CI: 7-57) and 43% (95%CI: 1-68) against influenza A(H1N1)pdm09, A(H3N2) and B respectively. Our results suggest that, regardless of patients' recent vaccination history, current seasonal vaccine conferred some protection to vaccinated patients against hospitalisation with influenza A(H3N2) and B. Vaccination of patients already vaccinated in both the past two seasons did not seem to be effective against A(H1N1)pdm09. To better understand the effect of repeated vaccination, engaging in large cohort studies documenting exposures to vaccine and natural infection is needed.
