Browsing by Author "Pran, E.R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Fibrous shape underlies the mutagenic and carcinogenic potential of nanosilver while surface chemistry affects the biosafety of iron oxide nanoparticlesPublication . Gábelová, A.; El Yamani, N.; Alonso, T.I.; Buliaková, B.; Srančíková, A.; Bábelová, A.; Pran, E.R.; Fjellsbø, L.M.; Elje, E.; Yazdani, M.; Silva, M.J.; Dušinská, M.Nowadays engineered nanomaterials (ENMs) are increasingly used in a wide range of commercial products and biomedical applications. Despite this, the knowledge of human potential health risk as well as comprehensive biological and toxicological information is still limited. We have investigated the capacity of two frequently used metallic ENMs, nanosilver and magnetite nanoparticles (MNPs), to induce thymidine kinase (Tk+/−) mutations in L5178Y mouse lymphoma cells and transformed foci in Bhas 42 cells. Two types of nanosilver, spherical nanoparticles (AgNM300) and fibrous (AgNM302) nanorods/wires, and MNPs differing in surface modifications [MNPs coated with sodium oleate (SO-MNPs), MNPs coated with SO + polyethylene glycol (SO-PEG-MNPs) and MNPs coated with SO + PEG + poly(lactide-co-glycolic acid) SO-PEG-PLGA-MNPs] were included in this study. Spherical AgNM300 showed neither mutagenic nor carcinogenic potential. In contrast, silver nanorods/wires (AgNM302) increased significantly the number of both gene mutations and transformed foci compared with the control (untreated) cells. Under the same treatment conditions, neither SO-MNPs nor SO-PEG-PLGA-MNPs increased the mutant frequency compared with control cells though an equivocal mutagenic effect was estimated for SOPEG- MNPs. Although SO-MNPs and SO-PEG-MNPs did not show any carcinogenic potential, SO-PEG-PLGA-MNPs increased concentration dependently the number of transformed foci in Bhas 42 cells compared with the control cells. Our results revealed that fibrous shape underlies the mutagenic and carcinogenic potential of nanosilver while surface chemistry affects the biosafety of MNPs. Considering that both nanosilver and MNPs are prospective ENMs for biomedical applications, further toxicological evaluations are warranted to assess comprehensively the biosafety of these nanomaterials.
- High throughput toxicity screening and intracellular detection of nanomaterialsPublication . Collins, A.R.; Annangi, B.; Rubio, L.; Marcos, R.; Dorn, M.; Merker, C.; Estrela-Lopis, I.; Cimpan, M.R.; Ibrahim, M.; Cimpan, E.; Ostermann, M.; Sauter, A.; Yamani, N.E.; Shaposhnikov, S.; Chevillard, S.; Paget, V.; Grall, R.; Delic, J.; de-Cerio, F.G.; Suarez-Merino, B.; Fessard, V.; Hogeveen, K.N.; Fjellsbø, L.M.; Pran, E.R.; Brzicova, T.; Topinka, J.; Silva, M.J.; Leite, P.E.; Ribeiro, A.R.; Granjeiro, J.M.; Grafström, R.; Prina-Mello, A.; Dusinska, M.With the growing numbers of nanomaterials (NMs), there is a great demand for rapid and reliable ways of testing NM safety—preferably using in vitro approaches, to avoid the ethical dilemmas associated with animal research. Data are needed for developing intelligent testing strategies for risk assessment of NMs, based on grouping and read-across approaches. The adoption of high throughput screening (HTS) and high content analysis (HCA) for NM toxicity testing allows the testing of numerous materials at different concentrations and on different types of cells, reduces the effect of inter-experimental variation, and makes substantial savings in time and cost.
