Browsing by Author "Oliveira, B."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Convergence of genes and cellular pathways dysregulated in autism spectrum disordersPublication . Pinto, D.; Delaby, E.; Merico, D.; Barbosa, M.; Merikangas, A.; Klei, L; Thiruvahindrapuram, B.; Xu, X.; Ziman, R.; Wang, Z.; Vorstman, J.A.; Thompson, A.; Regan, R.; Pilorge, M.; Pellecchia, G.; Pagnamenta, A.T.; Oliveira, B.; Marshall, C.R.; Magalhães, T.R.; Lowe, J.K.; Howe, J.L.; Griswold, A.J.; Gilbert, J.; Duketis, E.; Dombroski, B.A.; De Jonge, M.V.; Cuccaro, M.; Crawford, E.L.; Correia, C.T.; Conroy, J.; Conceição, I.C; Chiocchetti, A.G.; Casey, J.P.; Cai, G.; Cabrol, C.; Bolshakova, N.; Bacchelli, E.; Anney, R.; Gallinger, S.; Cotterchio, M.; Casey, G.; Zwaigenbaum, L.; Wittemeyer, K.; Wing, K.; Wallace, S.; van Engeland, H.; Tryfon, A.; Thomson, S.; Soorya, L.; Rogé, B.; Roberts, W.; Poustka, F.; Mouga, S.; Minshew, N.; McInnes, L.A.; McGrew, S.G.; Lord, C.; Leboyer, M.; Le Couteur, A.S.; Kolevzon, A.; Jiménez González, P.; Jacob, S.; Holt, R.; Guter, S.; Green, J.; Green, A.; Gillberg, C.; Fernandez, B.A.; Duque, F.; Delorme, R.; Dawson, G.; Chaste, P.; Café, C.; Brennan, S.; Bourgeron, T.; Bolton, P.F.; Bölte, S.; Bernier, R.; Baird, G.; Bailey, A.J.; Anagnostou, E.; Almeida, J.; Wijsman, E.M.; Vieland, V.J.; Vicente, A.M.; Schellenberg, G.D.; Pericak-Vance, M.; Paterson, A.D.; Parr, J.R.; Oliveira, G.; Nurnberger, J.I.; Monaco, A.P.; Maestrini, E.; Klauck, S.M.; Hakonarson, H.; Haines, J.L.; Geschwind, D.H.; Freitag, C.M.; Folstein, S.E.; Ennis, S.; Coon, H.; Battaglia, A.; Szatmari, P.; Sutcliffe, J.S.; Hallmayer, J.; Gill, M.; Cook, E.H.; Buxbaum, J.D.; Devlin, B.; Gallagher, L.; Betancur, C.Rare copy-number variation (CNV) is an important source of risk for autism spectrum disorders (ASDs). We analyzed 2,446 ASD-affected families and confirmed an excess of genic deletions and duplications in affected versus control groups (1.41-fold, p = 1.0 × 10(-5)) and an increase in affected subjects carrying exonic pathogenic CNVs overlapping known loci associated with dominant or X-linked ASD and intellectual disability (odds ratio = 12.62, p = 2.7 × 10(-15), ∼3% of ASD subjects). Pathogenic CNVs, often showing variable expressivity, included rare de novo and inherited events at 36 loci, implicating ASD-associated genes (CHD2, HDAC4, and GDI1) previously linked to other neurodevelopmental disorders, as well as other genes such as SETD5, MIR137, and HDAC9. Consistent with hypothesized gender-specific modulators, females with ASD were more likely to have highly penetrant CNVs (p = 0.017) and were also overrepresented among subjects with fragile X syndrome protein targets (p = 0.02). Genes affected by de novo CNVs and/or loss-of-function single-nucleotide variants converged on networks related to neuronal signaling and development, synapse function, and chromatin regulation.
- Definition of a putative pathological region in PARK2 associated with autism spectrum disorder through in silico analysis of its functional structurePublication . Conceição, I.C.; Rama, M.M.; Oliveira, B.; Café, C.; Almeida, J.; Mouga, S.; Duque, F.; Oliveira, G.; Vicente, A.M.Objective: The PARK2 gene encodes Parkin, a component of a multiprotein E3 ubiquitin ligase complex that targets substrate proteins for proteasomal degradation. PARK2 mutations are frequently associated with Parkinson’s disease, but structural alterations have also been described in patients with neurodevelopmental disorders (NDD), suggesting a pathological effect ubiquitous to neurodevelopmental and neurodegenerative brain processes. The present study aimed to define the critical regions for NDD within PARK2. Materials and methods: To clarify PARK2 involvement in NDDs, we examined the frequency and location of copy number variants (CNVs) identified in patients from our sample and reported in the literature and relevant databases, and compared with control populations. Results: Overall, the frequency of PARK2 CNVs was higher in controls than in NDD cases. However, closer inspection of the CNV location in PARK2 showed that the frequency of CNVs targeting the Parkin C-terminal, corresponding to the ring-between-ring (RBR) domain responsible for Parkin activity, is significantly higher in NDD cases than in controls. In contrast, CNVs targeting the N-terminal of Parkin, including domains that regulate ubiquitination activity, are very common both in cases and in controls. Conclusion: Although PARK2 may be a pathological factor for NDDs, likely not all variants are pathogenic, and a conclusive assessment of PARK2 variant pathogenicity requires an accurate analysis of their location within the coding region and encoded functional domains.
- Genetic and Functional Analyses of SHANK2 Mutations Suggest a Multiple Hit Model of Autism Spectrum DisordersPublication . Leblond, C.S.; Heinrich, J.; Delorme, R.; Proepper, C.; Betancur, C.; Huguet, G.; Konyukh, M.; Chaste, P.; Ey, E.; Rastam, M.; Anckarsäter, H.; Nygren, G.; Gillberg, I.C.; Melke, J.; Toro, R.; Regnault, B.; Fauchereau, F.; Mercati, O.; Lemière, N.; Skuse, D.; Poot, M.; Holt, R.; Monaco, A.P.; Järvelä, I.; Kantojärvi, K.; Vanhala, R.; Curran, S.; Collier, D.A.; Bolton, P.; Chiocchetti, A; Klauck, S.M.; Poustka, F.; Freitag, C.M.; Waltes, R.; Kopp, M.; Duketis, E.; Bacchelli, E.; Minopoli, F.; Ruta, L.; Battaglia, A.; Mazzone, L.; Maestrini, E.; Sequeira, A.F.; Oliveira, B.; Vicente, A.M.; Oliveira, G.; Pinto, D.; Scherer, S.W.; Zelenika, D.; Delepine, M.; Lathrop, M.; Bonneau, D.; Guinchat, V.; Devillard, F.; Assouline, B.; Mouren, M.C.; Leboyer, M.; Gillberg, C.; Boeckers, T.M.Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (P = 0.004, OR = 2.37, 95% CI = 1.23-4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11-q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the "multiple hit model" for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD.
- Recurrent duplications of the annexin A1 gene (ANXA1) in autism spectrum disordersPublication . Correia, C.T.; Conceição, I.C.; Oliveira, B.; Coelho, J.; Sousa, I.; Sequeira, A.F.; Almeida, J.; Café, C.; Duque, F; Mouga, S.; Roberts, W.; Gao, K.; Lowe, J.K.; Thiruvahindrapuram, B.; Walker, S.; Marshall, C.R.; Pinto, D.; Nurnberger, J.I.; Scherer, S.W.; Geschwind, D.H.; Oliveira, G.; Vicente, A.M.Validating the potential pathogenicity of copy number variants (CNVs) identified in genome-wide studies of autism spectrum disorders (ASD) requires detailed assessment of case/control frequencies, inheritance patterns, clinical correlations, and functional impact. Here, we characterize a small recurrent duplication in the annexin A1 (ANXA1) gene, identified by the Autism Genome Project (AGP) study.
- The impact of the metabotropic glutamate receptor and other gene family interaction networks on autismPublication . Hadley, D.; Wu, Z.L.; Kao, C.; Kini, A.; Mohamed-Hadley, A.; Thomas, K.; Vazquez, L.; Qiu, H.; Mentch, F.; Pellegrino, R.; Kim, C.; Connolly, J.; Glessner, J.; Hakonarson, H.; Pinto, D.; Merikangas, A.; Klei, L.; Vorstman, J.A.; Thompson, A.; Regan, R.; Pagnamenta, A.T.; Oliveira, B.; Magalhaes, T.R.; Gilbert, J.; Duketis, E.; De Jonge, M.V.; Cuccaro, M.; Correia, C.T.; Conroy, J.; Conceição, I.C.; Chiocchetti, A.G.; Casey, J.P.; Bolshakova, N.; Bacchelli, E.; Anney, R.; Zwaigenbaum, L.; Wittemeyer, K.; Wallace, S.; Engeland, Hv; Soorya, L.; Rogé, B.; Roberts, W.; Poustka, F.; Mouga, S.; Minshew, N.; McGrew, S.G.; Lord, C.; Leboyer, M.; Le Couteur, A.S.; Kolevzon, A.; Jacob, S.; Guter, S.; Green, J.; Green, A.; Gillberg, C.; Fernandez, B.A.; Duque, F.; Delorme, R.; Dawson, G.; Café, C.; Brennan, S.; Bourgeron, T.; Bolton, P.F.; Bölte, S.; Bernier, R.; Baird, G.; Bailey, A.J.; Anagnostou, E.; Almeida, J.; Wijsman, E.M.; Vieland, V.J.; Vicente, A.M.; Schellenberg, G.D.; Pericak-Vance, M.; Paterson, A.D.; Parr, J.R.; Oliveira, G.; Almeida, J.; Café, C.; Mouga, S.; Correia, C.; Nurnberger, J.I.; Monaco, A.P.; Maestrini, E.; Klauck, S.M.; Hakonarson, H.; Haines, J.L.; Geschwind, D.H.; Freitag, C.M.; Folstein, S.E.; Ennis, S.; Coon, H.; Battaglia, A.; Szatmari, P.; Sutcliffe, J.S.; Hallmayer, J.; Gill, M.; Cook, E.H.; Buxbaum, J.D.; Devlin, B.; Gallagher, L.; Betancur, C.; Scherer, S.W.Although multiple reports show that defective genetic networks underlie the aetiology of autism, few have translated into pharmacotherapeutic opportunities. Since drugs compete with endogenous small molecules for protein binding, many successful drugs target large gene families with multiple drug binding sites. Here we search for defective gene family interaction networks (GFINs) in 6,742 patients with the ASDs relative to 12,544 neurologically normal controls, to find potentially druggable genetic targets. We find significant enrichment of structural defects (P≤2.40E-09, 1.8-fold enrichment) in the metabotropic glutamate receptor (GRM) GFIN, previously observed to impact attention deficit hyperactivity disorder (ADHD) and schizophrenia. Also, the MXD-MYC-MAX network of genes, previously implicated in cancer, is significantly enriched (P≤3.83E-23, 2.5-fold enrichment), as is the calmodulin 1 (CALM1) gene interaction network (P≤4.16E-04, 14.4-fold enrichment), which regulates voltage-independent calcium-activated action potentials at the neuronal synapse. We find that multiple defective gene family interactions underlie autism, presenting new translational opportunities to explore for therapeutic interventions.
