Browsing by Author "Mistry, Malcolm N."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Comparison of weather station and climate reanalysis data for modelling temperature-related mortalityPublication . Mistry, Malcolm N.; Schneider, Rochelle; Masselot, Pierre; Royé, Dominic; Armstrong, Ben; Kyselý, Jan; Orru, Hans; Sera, Francesco; Tong, Shilu; Lavigne, Éric; Urban, Aleš; Madureira, Joana; García-León, David; Ibarreta, Dolores; Ciscar, Juan-Carlos; Feyen, Luc; de Schrijver, Evan; de Sousa Zanotti Stagliorio Coelho, Micheline; Pascal, Mathilde; Tobias, Aurelio; Alahmad, Barrak; Abrutzky, Rosana; Saldiva, Paulo Hilario Nascimento; Correa, Patricia Matus; Orteg, Nicolás Valdés; Kan, Haidong; Osorio, Samuel; Indermitte, Ene; Jaakkola, Jouni J.K.; Ryti, Niilo; Schneider, Alexandra; Huber, Veronika; Katsouyanni, Klea; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Michelozzi, Paola; de’Donato, Francesca; Hashizume, Masahiro; Kim, Yoonhee; Diaz, Magali Hurtado; De la Cruz Valencia, César; Overcenco, Ala; Houthuijs, Danny; Ameling, Caroline; Rao, Shilpa; Seposo, Xerxes; Nunes, Baltazar; Holobaca, Iulian-Horia; Kim, Ho; Lee, Whanhee; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Guo, Yue-Liang Leon; Chen, Bing-Yu; Colistro, Valentina; Zanobetti, Antonella; Schwartz, Joel; Dang, Tran Ngoc; Van Dung, Do; Guo, Yuming; Vicedo-Cabrera, Ana M.; Gasparrini, AntonioEpidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data. Our findings show that reanalysis temperature from the last ERA5 products generally compare well to station observations, with similar non-optimal temperature-related risk estimates. However, the analysis offers some indication of lower performance in tropical regions, with a likely underestimation of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure variables in epidemiological analyses of temperature-related risk.
- Impacts of land-use and land-cover changes on temperature-related mortalityPublication . Orlov, Anton ; De Hertog, Steven J. ; Havermann, Felix ; Guo, Suqi ; Manola, Iris ; Lejeune, Quentin ; Schleussner, Carl-Friedrich ; Thiery, Wim ; Pongratz, Julia ; Humpenöder, Florian ; Popp, Alexander ; Aunan, Kristin ; Armstrong, Ben ; Royé, Dominic ; Cvijanovic, Ivana ; Lavigne, Eric ; Achilleos, Souzana ; Bell, Michelle ; Masselot, Pierre ; Sera, Francesco ; Vicedo-Cabrera, Ana Maria ; Gasparrini, Antonio ; Mistry, Malcolm N. ; Multi-Country Multi-City (MCC) Collaborative Research NetworkBackground: Land-use and land-cover change (LULCC) can substantially affect climate through biogeochemical and biogeophysical effects. Here, we examine the future temperature-mortality impact for two contrasting LULCC scenarios in a background climate of low greenhouse gas concentrations. The first LULCC scenario implies a globally sustainable land use and socioeconomic development (sustainability). In the second LULCC scenario, sustainability is implemented only in the Organisation for Economic Cooperation and Development countries (inequality). Methods: Using the Multi-Country Multi-City (MCC) dataset on mortality from 823 locations in 52 countries and territories, we estimated the temperature-mortality exposure-response functions (ERFs). The LULCC and noLULCC scenarios were implemented in three fully coupled Earth system models (ESMs): Community Earth System Model, Max Planck Institute Earth System Model, and European Consortium Earth System Model. Next, using temperature from the ESMs' simulations and the estimated location-specific ERFs, we assessed the temperature-related impact on mortality for the LULCC and noLULCC scenarios around the mid and end century. Results: Under sustainability, the multimodel mean changes in excess mortality range from -1.1 to +0.6 percentage points by 2050-2059 across all locations and from -1.4 to +0.5 percentage points by 2090-2099. Under inequality, these vary from -0.7 to +0.9 percentage points by 2050-2059 and from -1.3 to +2 percentage points by 2090-2099. Conclusions: While an unequal socioeconomic development and unsustainable land use could increase the burden of heat-related mortality in most regions, globally sustainable land use has the potential to reduce it in some locations. However, the total (cold and heat) impact on mortality is very location specific and strongly depends on the underlying climate change scenario due to nonlinearity in the temperature-mortality relationship.
- Optimal heat stress metric for modelling heat‐related mortality varies from country to countryPublication . Lo, Eunice; Mitchell, Dann M.; Buzan, Jonathan R.; Zscheischler, Jakob; Schneider, Rochelle; Mistry, Malcolm N.; Kyselý, Jan; Lavigne, Éric; Silva, Susana; Royé, Dominic; Urban, Aleš; Armstrong, Ben; Gasparrini, Antonio; Vicedo‐Cabrera, Ana M.Combined heat and humidity is frequently described as the main driver of human heat-related mortality, more so than dry-bulb temperature alone. While based on physiological thinking, this assumption has not been robustly supported by epidemiological evidence. By performing the first systematic comparison of eight heat stress metrics (i.e., temperature combined with humidity and other climate variables) with warm-season mortality, in 604 locations over 39 countries, we find that the optimal metric for modelling mortality varies from country to country. Temperature metrics with no or little humidity modification associates best with mortality in ~40% of the studied countries. Apparent temperature (combined temperature, humidity and wind speed) dominates in another 40% of countries. There is no obvious climate grouping in these results. We recommend, where possible, that researchers use the optimal metric for each country. However, dry-bulb temperature performs similarly to humidity-based heat stress metrics in estimating heat-related mortality in present-day climate.
- Regional variation in the role of humidity on city-level heat-related mortalityPublication . Guo, Qiang; Mistry, Malcolm N.; Zhou, Xudong; Zhao, Gang; Kino, Kanon; Wen, Bo; Yoshimura, Kei; Satoh, Yusuke; Cvijanovic, Ivana; Kim, Yoonhee; Ng, Chris Fook Sheng; Vicedo-Cabrera, Ana M.; Armstrong, Ben; Urban, Aleš; Katsouyanni, Klea; Masselot, Pierre; Tong, Shilu; Sera, Francesco; Huber, Veronika; Bell, Michelle L.; Kyselý, Jan; Gasparrini, Antonio; Hashizume, Masahiro; Oki, Taikan; Abrutzky, Rosana; Guo, Yuming; de Sousa Zanotti Stagliorio Coelho, Micheline; Nascimento Saldiva, Paulo Hilario; Lavigne, Eric; Ortega, Nicolás Valdés; Correa, Patricia Matus; Kan, Haidong; Osorio, Samuel; Roye, Dominic; Indermitte, Ene; Orru, Hans; Jaakkola, Jouni J K.; Ryti, Niilo; Pascal, Mathilde; Schneider, Alexandra; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Zeka, Ariana; Goodman, Patrick; de'Donato, Francesca; Michelozzi, Paola; Alahmad, Barrak; De la Cruz Valencia, César; Hurtado Diaz, Magali; Overcenco, Ala; Ameling, Caroline; Houthuijs, Danny; Rao, Shilpa; Carrasco, Gabriel; Seposo, Xerxes; Madureira, Joana; Silva, Susana; Holobaca, Iulian-Horia; Acquaotta, Fiorella; Scovronick, Noah; Kim, Ho; Lee, Whanhee; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Ragettli, Martina S.; Pan, Shih-Chun; Guo, Yue Leon; Li, Shanshan; Schneider, Rochelle; Colistro, Valentina; Zanobetti, Antonella; Schwartz, Joel; Van Dung, Do; Ngoc Dang, Tran; Honda, YasushiThe rising humid heat is regarded as a severe threat to human survivability, but the proper integration of humid heat into heat-health alerts is still being explored. Using state-of-the-art epidemiological and climatological datasets, we examined the association between multiple heat stress indicators (HSIs) and daily human mortality in 739 cities worldwide. Notable differences were observed in the long-term trends and timing of heat events detected by HSIs. Air temperature (Tair) predicts heat-related mortality well in cities with a robust negative Tair-relative humidity correlation (CT-RH). However, in cities with near-zero or weak positive CT-RH, HSIs considering humidity provide enhanced predictive power compared to Tair. Furthermore, the magnitude and timing of heat-related mortality measured by HSIs could differ largely from those associated with Tair in many cities. Our findings provide important insights into specific regions where humans are vulnerable to humid heat and can facilitate the further enhancement of heat-health alert systems.
- Seasonality of mortality under climate change: a multicountry projection studyPublication . Madaniyazi, Lina; Armstrong, Ben; Tobias, Aurelio; Mistry, Malcolm N.; Bell, Michelle L.; Urban, Aleš; Kyselý, Jan; Ryti, Niilo; Cvijanovic, Ivana; Ng, Chris Fook Sheng; Roye, Dominic; Vicedo-Cabrera, Ana Maria; Tong, Shilu; Lavigne, Eric; Íñiguez, Carmen; das Neves Pereira da Silva, Susana; Madureira, Joana; Jaakkola, Jouni J.K.; Sera, Francesco; Honda, Yasushi; Gasparrini, Antonio; Hashizume, Masahiro; Multi-Country Multi-City Collaborative Research NetworkBackground: Climate change can directly impact temperature-related excess deaths and might subsequently change the seasonal variation in mortality. In this study, we aimed to provide a systematic and comprehensive assessment of potential future changes in the seasonal variation, or seasonality, of mortality across different climate zones. Methods: In this modelling study, we collected daily time series of mean temperature and mortality (all causes or non-external causes only) via the Multi-Country Multi-City Collaborative (MCC) Research Network. These data were collected during overlapping periods, spanning from Jan 1, 1969 to Dec 31, 2020. We projected daily mortality from Jan 1, 2000 to Dec 31, 2099, under four climate change scenarios corresponding to increasing emissions (Shared Socioeconomic Pathways [SSP] scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). We compared the seasonality in projected mortality between decades by its shape, timings (the day-of-year) of minimum (trough) and maximum (peak) mortality, and sizes (peak-to-trough ratio and attributable fraction). Attributable fraction was used to measure the burden of seasonality of mortality. The results were summarised by climate zones. Findings: The MCC dataset included 126 809 537 deaths from 707 locations within 43 countries or areas. After excluding the only two polar locations (both high-altitude locations in Peru) from climatic zone assessments, we analysed 126 766 164 deaths in 705 locations aggregated in four climate zones (tropical, arid, temperate, and continental). From the 2000s to the 2090s, our projections showed an increase in mortality during the warm seasons and a decrease in mortality during the cold seasons, albeit with mortality remaining high during the cold seasons, under all four SSP scenarios in the arid, temperate, and continental zones. The magnitude of this changing pattern was more pronounced under the high-emission scenarios (SSP3-7.0 and SSP5-8.5), substantially altering the shape of seasonality of mortality and, under the highest emission scenario (SSP5-8.5), shifting the mortality peak from cold seasons to warm seasons in arid, temperate, and continental zones, and increasing the size of seasonality in all zones except the arid zone by the end of the century. In the 2090s compared with the 2000s, the change in peak-to-trough ratio (relative scale) ranged from 0·96 to 1·11, and the change in attributable fraction ranged from 0·002% to 0·06% under the SSP5-8.5 (highest emission) scenario. Interpretation: A warming climate can substantially change the seasonality of mortality in the future. Our projections suggest that health-care systems should consider preparing for a potentially increased demand during warm seasons and sustained high demand during cold seasons, particularly in regions characterised by arid, temperate, and continental climates.
