Browsing by Author "Mistry, Malcolm"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Excess mortality attributed to heat and cold: a health impact assessment study in 854 cities in EuropePublication . Masselot, Pierre; Mistry, Malcolm; Vanoli, Jacopo; Schneider, Rochelle; Iungman, Tamara; Garcia-Leon, David; Ciscar, Juan-Carlos; Feyen, Luc; Orru, Hans; Urban, Aleš; Breitner, Susanne; Huber, Veronika; Schneider, Alexandra; Samoli, Evangelia; Stafoggia, Massimo; de’Donato, Francesca; Rao, Shilpa; Armstrong, Ben; Nieuwenhuijsen, Mark; Vicedo-Cabrera, Ana Maria; Gasparrini, Antonio; Achilleos, Souzana; Kyselý, Jan; Indermitte, Ene; Jaakkola, Jouni J.K.; Ryti, Niilo; Pascal, Mathilde; Katsouyanni, Klea; Analitis, Antonis; Goodman, Patrick; Zeka, Ariana; Michelozzi, Paola; Houthuijs, Danny; Ameling, Caroline; Silva, Susana; Madureira, Joana; Holobaca, Iulian-Horia; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Surname, First name; Zafeiratou, Sofia; Vazquez Fernandez, Liliana; Monteiro, Ana; Rai, Masna; Zhang, Siqi; Aunan, KristinBackground: Heat and cold are established environmental risk factors for human health. However, mapping the related health burden is a difficult task due to the complexity of the associations and the differences in vulnerability and demographic distributions. In this study, we did a comprehensive mortality impact assessment due to heat and cold in European urban areas, considering geographical differences and age-specific risks. Methods: We included urban areas across Europe between Jan 1, 2000, and Dec 12, 2019, using the Urban Audit dataset of Eurostat and adults aged 20 years and older living in these areas. Data were extracted from Eurostat, the Multi-country Multi-city Collaborative Research Network, Moderate Resolution Imaging Spectroradiometer, and Copernicus. We applied a three-stage method to estimate risks of temperature continuously across the age and space dimensions, identifying patterns of vulnerability on the basis of city-specific characteristics and demographic structures. These risks were used to derive minimum mortality temperatures and related percentiles and raw and standardised excess mortality rates for heat and cold aggregated at various geographical levels. Findings: Across the 854 urban areas in Europe, we estimated an annual excess of 203 620 (empirical 95% CI 180 882-224 613) deaths attributed to cold and 20 173 (17 261-22 934) attributed to heat. These corresponded to age-standardised rates of 129 (empirical 95% CI 114-142) and 13 (11-14) deaths per 100 000 person-years. Results differed across Europe and age groups, with the highest effects in eastern European cities for both cold and heat. Interpretation: Maps of mortality risks and excess deaths indicate geographical differences, such as a north-south gradient and increased vulnerability in eastern Europe, as well as local variations due to urban characteristics. The modelling framework and results are crucial for the design of national and local health and climate policies and for projecting the effects of cold and heat under future climatic and socioeconomic scenarios.
- Global, regional, and national burden of mortality associated with cold spells during 2000–19: a three-stage modelling studyPublication . Gao, Yuan; Huang, Wenzhong; Zhao, Qi; Ryti, Niilo; Armstrong, Ben; Gasparrini, Antonio; Tong, Shilu; Pascal, Mathilde; Urban, Aleš; Zeka, Ariana; Lavigne, Eric; Madureira, Joana; Goodman, Patrick; Huber, Veronika; Forsberg, Bertil; Kyselý, Jan; Sera, Francesco; Guo, Yuming; Li, Shanshan; Gao, Yuan; Huang, Wenzhong; Zhao, Qi; Ryti, Niilo; Armstrong, Ben; Gasparrini, Antonio; Tong, Shilu; Pascal, Mathilde; Urban, Aleš; Zeka, Ariana; Lavigne, Eric; Madureira, Joana; Goodman, Patrick; Huber, Veronika; Forsberg, Bertil; Kyselý, Jan; Sera, Francesco; Bell, Michelle; Simon Hales; Honda, Yasushi; Jaakkola, Jouni J.K.; Tobias, Aurelio; Vicedo-Cabrera, Ana Maria; Abrutzky, Rosana; Coelho, Micheline de Sousa Zanotti Stagliorio; Saldiva, Paulo Hilario Nascimento; Correa, Patricia Matus; Ortega, Nicolás Valdés; Kan, Haidong; Osorio, Samuel; Roye, Dominic; Orru, Hans; Indermitte, Ene; Schneider, Alexandra; Katsouyanni, Klea; Analitis, Antonis; Carlsen, Hanne Krage; Mayvaneh, Fatemeh; Roradeh, Hematollah; Raz, Raanan; Michelozzi, Paola; de'Donato, Francesca; Hashizume, Masahiro; Kim, Yoonhee; Alahmad, Barrak; Cauchy, John Paul; Diaz, Magali Hurtado; Arellano, Eunice Elizabeth Félix; Valencia, César De la Cruz; Overcenco, Ala; Houthuijs, Danny; Ameling, Caroline; Rao, Shilpa; Carrasco, Gabriel; Seposo, Xerxes; Chua, Paul Lester Carlos; Silva, Susana das Neves Pereira da; Nunes, Baltazar; Holobaca, Iulian-Horia; Cvijanovic, Ivana; Mistry, Malcolm; Scovronick, Noah; Acquaotta, Fiorella; Kim, Ho; Lee, Whanhee; Íñiguez, Carmen; Åström, Christofer; Ragettli, Martina S.; Guo, Yue Leon; Pan, Shih-Chun; Colistro, Valentina; Zanobetti, Antonella; Schwartz, Joel; Dang, Tran Ngoc; Dung, Do Van; Guo, Yuming; Li, ShanshanBackground: Exposure to cold spells is associated with mortality. However, little is known about the global mortality burden of cold spells. Methods: A three-stage meta-analytical method was used to estimate the global mortality burden associated with cold spells by means of a time series dataset of 1960 locations across 59 countries (or regions). First, we fitted the location-specific, cold spell-related mortality associations using a quasi-Poisson regression with a distributed lag non-linear model with a lag period of up to 21 days. Second, we built a multivariate meta-regression model between location-specific associations and seven predictors. Finally, we predicted the global grid-specific cold spell-related mortality associations during 2000-19 using the fitted meta-regression model and the yearly grid-specific meta-predictors. We calculated the annual excess deaths, excess death ratio (excess deaths per 1000 deaths), and excess death rate (excess deaths per 100 000 population) due to cold spells for each grid across the world. Findings: Globally, 205 932 (95% empirical CI [eCI] 162 692-250 337) excess deaths, representing 3·81 (95% eCI 2·93-4·71) excess deaths per 1000 deaths (excess death ratio), and 3·03 (2·33-3·75) excess deaths per 100 000 population (excess death rate) were associated with cold spells per year between 2000 and 2019. The annual average global excess death ratio in 2016-19 increased by 0·12 percentage points and the excess death rate in 2016-19 increased by 0·18 percentage points, compared with those in 2000-03. The mortality burden varied geographically. The excess death ratio and rate were highest in Europe, whereas these indicators were lowest in Africa. Temperate climates had higher excess death ratio and rate associated with cold spells than other climate zones. Interpretation: Cold spells are associated with substantial mortality burden around the world with geographically varying patterns. Although the number of cold spells has on average been decreasing since year 2000, the public health threat of cold spells remains substantial. The findings indicate an urgency of taking local and regional measures to protect the public from the mortality burdens of cold spells. Funding: Australian Research Council, Australian National Health and Medical Research Council, EU's Horizon 2020 Project Exhaustion.
