Browsing by Author "Matus, Patricia"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Ambient carbon monoxide and daily mortality: a global time-series study in 337 citiesPublication . Chen, Kai; Breitner, Susanne; Wolf, Kathrin; Stafoggia, Massimo; Sera, Francesco; Vicedo-Cabrera, Ana M.; Guo, Yuming; Tong, Shilu; Lavigne, Eric; Matus, Patricia; Valdés, Nicolás; Kan, Haidong; Jaakkola, Jouni J.K.; Ryti, Niilo R.I.; Huber, Veronika; Scortichini, Matteo; Hashizume, Masahiro; Honda, Yasushi; Nunes, Baltazar; Madureira, Joana; Holobâcă, Iulian Horia; Fratianni, Simona; Kim, Ho; Lee, Whanhee; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S-; Guo, Yue-Liang Leon; Chen, Bing-Yu; Li, Shanshan; Milojevic, Ai; Zanobetti, Antonella; Schwartz, Joel; Bell, Michelle L-; Gasparrini, Antonio; Schneider, AlexandraBackground: Epidemiological evidence on short-term association between ambient carbon monoxide (CO) and mortality is inconclusive and limited to single cities, regions, or countries. Generalisation of results from previous studies is hindered by potential publication bias and different modelling approaches. We therefore assessed the association between short-term exposure to ambient CO and daily mortality in a multicity, multicountry setting. Methods: We collected daily data on air pollution, meteorology, and total mortality from 337 cities in 18 countries or regions, covering various periods from 1979 to 2016. All included cities had at least 2 years of both CO and mortality data. We estimated city-specific associations using confounder-adjusted generalised additive models with a quasi-Poisson distribution, and then pooled the estimates, accounting for their statistical uncertainty, using a random-effects multilevel meta-analytical model. We also assessed the overall shape of the exposure-response curve and evaluated the possibility of a threshold below which health is not affected. Findings: Overall, a 1 mg/m3 increase in the average CO concentration of the previous day was associated with a 0·91% (95% CI 0·32-1·50) increase in daily total mortality. The pooled exposure-response curve showed a continuously elevated mortality risk with increasing CO concentrations, suggesting no threshold. The exposure-response curve was steeper at daily CO levels lower than 1 mg/m3, indicating greater risk of mortality per increment in CO exposure, and persisted at daily concentrations as low as 0·6 mg/m3 or less. The association remained similar after adjustment for ozone but was attenuated after adjustment for particulate matter or sulphur dioxide, or even reduced to null after adjustment for nitrogen dioxide. Interpretation: This international study is by far the largest epidemiological investigation on short-term CO-related mortality. We found significant associations between ambient CO and daily mortality, even at levels well below current air quality guidelines. Further studies are warranted to disentangle its independent effect from other traffic-related pollutants.
- Ambient particulate air pollution and daily mortality in 652 citiesPublication . Liu, Cong; Chen, Renjie; Sera, Francesco; Vicedo-Cabrera, Ana M.; Guo, Yuming; Tong, Shilu; Coelho, Micheline S.Z.S.; Saldiva, Paulo H.N.; Lavigne, Eric; Matus, Patricia; Valdes Ortega, Nicolas; Osorio Garcia, Samuel; Pascal, Mathilde; Stafoggia, Massimo; Scortichini, Matteo; Hashizume, Masahiro; Honda, Yasushi; Hurtado-Díaz, Magali; Cruz, Julio; Nunes, Baltazar; Teixeira, João P.; Kim, Ho; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Guo, Yue-Leon; Chen, Bing-Yu; Bell, Michelle L.; Wright, Caradee Y.; Scovronick, Noah; Garland, Rebecca M.; Milojevic, Ai; Kyselý, Jan; Urban, Aleš; Orru, Hans; Indermitte, Ene; Jaakkola, Jouni J.K.; Ryti, Niilo R.I.; Katsouyanni, Klea; Analitis, Antonis; Zanobetti, Antonella; Schwartz, Joel; Chen, Jianmin; Wu, Tangchun; Cohen, Aaron; Gasparrini, Antonio; Kan, HaidongThe systematic evaluation of the results of time-series studies of air pollution is challenged by differences in model specification and publication bias. We evaluated the associations of inhalable particulate matter (PM) with an aerodynamic diameter of 10 μm or less (PM10) and fine PM with an aerodynamic diameter of 2.5 μm or less (PM2.5) with daily all-cause, cardiovascular, and respiratory mortality across multiple countries or regions. Daily data on mortality and air pollution were collected from 652 cities in 24 countries or regions. We used overdispersed generalized additive models with random-effects meta-analysis to investigate the associations. Two-pollutant models were fitted to test the robustness of the associations. Concentration-response curves from each city were pooled to allow global estimates to be derived. On average, an increase of 10 μg per cubic meter in the 2-day moving average of PM10 concentration, which represents the average over the current and previous day, was associated with increases of 0.44% (95% confidence interval [CI], 0.39 to 0.50) in daily all-cause mortality, 0.36% (95% CI, 0.30 to 0.43) in daily cardiovascular mortality, and 0.47% (95% CI, 0.35 to 0.58) in daily respiratory mortality. The corresponding increases in daily mortality for the same change in PM2.5 concentration were 0.68% (95% CI, 0.59 to 0.77), 0.55% (95% CI, 0.45 to 0.66), and 0.74% (95% CI, 0.53 to 0.95). These associations remained significant after adjustment for gaseous pollutants. Associations were stronger in locations with lower annual mean PM concentrations and higher annual mean temperatures. The pooled concentration-response curves showed a consistent increase in daily mortality with increasing PM concentration, with steeper slopes at lower PM concentrations. Our data show independent associations between short-term exposure to PM10 and PM2.5 and daily all-cause, cardiovascular, and respiratory mortality in more than 600 cities across the globe. These data reinforce the evidence of a link between mortality and PM concentration established in regional and local studies. (Funded by the National Natural Science Foundation of China and others).
- Mortality risk attributable to wildfire-related PM2·5 pollution: a global time series study in 749 locationsPublication . Chen, Gongbo; Guo, Yuming; Yue, Xu; Tong, Shilu; Gasparrini, Antonio; Bell, Michelle L.; Armstrong, Ben; Schwartz, Joel; Jaakkola, Jouni J.K.; Zanobetti, Antonella; Lavigne, Eric; Nascimento Saldiva, Paulo Hilario; Kan, Haidong; Royé, Dominic; Milojevic, Ai; Overcenco, Ala; Urban, Aleš; Schneider, Alexandra; Entezari, Alireza; Vicedo-Cabrera, Ana Maria; Zeka, Ariana; Tobias, Aurelio; Nunes, Baltazar; Alahmad, Barrak; Forsberg, Bertil; Pan, Shih-Chun; Íñiguez, Carmen; Ameling, Caroline; De la Cruz Valencia, César; Åström, Christofer; Houthuijs, Danny; Van Dung, Do; Samoli, Evangelia; Mayvaneh, Fatemeh; Sera, Francesco; Carrasco-Escobar, Gabriel; Lei, Yadong; Orru, Hans; Kim, Ho; Holobaca, Iulian-Horia; Kyselý, Jan; Teixeira, João Paulo; Madureira, Joana; Katsouyanni, Klea; Hurtado-Díaz, Magali; Maasikmets, Marek; Ragettli, Martina S.; Hashizume, Masahiro; Stafoggia, Massimo; Pascal, Mathilde; Scortichini, Matteo; de Sousa Zanotti Stagliorio Coêlho, Micheline; Valdés Ortega, Nicolás; Ryti, Niilo R.I.; Scovronick, Noah; Matus, Patricia; Goodman, Patrick; Garland, Rebecca M.; Abrutzky, Rosana; Garcia, Samuel Osorio; Rao, Shilpa; Fratianni, Simona; Dang, Tran Ngoc; Colistro, Valentina; Huber, Veronika; Lee, Whanhee; Seposo, Xerxes; Honda, Yasushi; Guo, Yue Leon; Ye, Tingting; Yu, Wenhua; Abramson, Michael J.; Samet, Jonathan M.; Li, ShanshanBackground: Many regions of the world are now facing more frequent and unprecedentedly large wildfires. However, the association between wildfire-related PM2·5 and mortality has not been well characterised. We aimed to comprehensively assess the association between short-term exposure to wildfire-related PM2·5 and mortality across various regions of the world. Methods: For this time series study, data on daily counts of deaths for all causes, cardiovascular causes, and respiratory causes were collected from 749 cities in 43 countries and regions during 2000-16. Daily concentrations of wildfire-related PM2·5 were estimated using the three-dimensional chemical transport model GEOS-Chem at a 0·25° × 0·25° resolution. The association between wildfire-related PM2·5 exposure and mortality was examined using a quasi-Poisson time series model in each city considering both the current-day and lag effects, and the effect estimates were then pooled using a random-effects meta-analysis. Based on these pooled effect estimates, the population attributable fraction and relative risk (RR) of annual mortality due to acute wildfire-related PM2·5 exposure was calculated. Findings: 65·6 million all-cause deaths, 15·1 million cardiovascular deaths, and 6·8 million respiratory deaths were included in our analyses. The pooled RRs of mortality associated with each 10 μg/m3 increase in the 3-day moving average (lag 0-2 days) of wildfire-related PM2·5 exposure were 1·019 (95% CI 1·016-1·022) for all-cause mortality, 1·017 (1·012-1·021) for cardiovascular mortality, and 1·019 (1·013-1·025) for respiratory mortality. Overall, 0·62% (95% CI 0·48-0·75) of all-cause deaths, 0·55% (0·43-0·67) of cardiovascular deaths, and 0·64% (0·50-0·78) of respiratory deaths were annually attributable to the acute impacts of wildfire-related PM2·5 exposure during the study period. Interpretation: Short-term exposure to wildfire-related PM2·5 was associated with increased risk of mortality. Urgent action is needed to reduce health risks from the increasing wildfires.
