Browsing by Author "Marbus, Sierk"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Repeated seasonal influenza vaccination among elderly in Europe: effects on laboratory confirmed hospitalised influenzaPublication . Rondy, Marc; Launay, Odile; Castilla, Jesus; Costanzo, Simona; Puig-Barberà, Joan; Gefenaite, Giedre; Larrauri, Amparo; Rizzo, Caterina; Pitigoi, Daniela; Syrjänen, Ritva K.; Machado, Ausenda; Kurečić Filipović, Sanja; Krisztina Horváth, Judit; Paradowska-Stankiewicz, Iwona; Marbus, Sierk; InNHOVE/I-MOVE+working group, Alain; MorenIn Europe, annual influenza vaccination is recommended to elderly. From 2011 to 2014 and in 2015-16, we conducted a multicentre test negative case control study in hospitals of 11 European countries to measure influenza vaccine effectiveness (IVE) against laboratory confirmed hospitalised influenza among people aged ≥65years. We pooled four seasons data to measure IVE by past exposures to influenza vaccination. We swabbed patients admitted for clinical conditions related to influenza with onset of severe acute respiratory infection ≤7days before admission. Cases were patients RT-PCR positive for influenza virus and controls those negative for any influenza virus. We documented seasonal vaccination status for the current season and the two previous seasons. We recruited 5295 patients over the four seasons, including 465A(H1N1)pdm09, 642A(H3N2), 278 B case-patients and 3910 controls. Among patients unvaccinated in both previous two seasons, current seasonal IVE (pooled across seasons) was 30% (95%CI: -35 to 64), 8% (95%CI: -94 to 56) and 33% (95%CI: -43 to 68) against influenza A(H1N1)pdm09, A(H3N2) and B respectively. Among patients vaccinated in both previous seasons, current seasonal IVE (pooled across seasons) was -1% (95%CI: -80 to 43), 37% (95%CI: 7-57) and 43% (95%CI: 1-68) against influenza A(H1N1)pdm09, A(H3N2) and B respectively. Our results suggest that, regardless of patients' recent vaccination history, current seasonal vaccine conferred some protection to vaccinated patients against hospitalisation with influenza A(H3N2) and B. Vaccination of patients already vaccinated in both the past two seasons did not seem to be effective against A(H1N1)pdm09. To better understand the effect of repeated vaccination, engaging in large cohort studies documenting exposures to vaccine and natural infection is needed.
- Vaccine effectiveness against influenza A(H3N2) and B among laboratory‐confirmed, hospitalised older adults, Europe, 2017‐18: A season of B lineage mismatched to the trivalent vaccinePublication . Rose, Angela M.C.; Kissling, Esther; Gherasim, Alin; Casado, Itziar; Bella, Antonino; Launay, Odile; Lazăr, Mihaela; Marbus, Sierk; Kuliese, Monika; Syrjänen, Ritva; Machado, Ausenda; Kurečić Filipović, Sanja; Larrauri, Amparo; Castilla, Jesús; Alfonsi, Valeria; Galtier, Florence; Ivanciuc, Alina; Meijer, Adam; Mickiene, Aukse; Ikonen, Niina; Gómez, Verónica; Lovrić Makarić, Zvjezdana; Moren, Alain; Valenciano, Marta; I-MOVE Hospital study teamBackground: Influenza A(H3N2), A(H1N1)pdm09 and B viruses co-circulated in Europe in 2017-18, predominated by influenza B. WHO-recommended, trivalent vaccine components were lineage-mismatched for B. The I-MOVE hospital network measured 2017-18 seasonal influenza vaccine effectiveness (IVE) against influenza A(H3N2) and B among hospitalised patients (≥65 years) in Europe. Methods: Following the same generic protocol for test-negative design, hospital teams in nine countries swabbed patients ≥65 years with recent onset (≤7 days) severe acute respiratory infection (SARI), collecting information on demographics, vaccination status and underlying conditions. Cases were RT-PCR positive for influenza A(H3N2) or B; controls: negative for any influenza. "Vaccinated" patients had SARI onset >14 days after vaccination. We measured pooled IVE against influenza, adjusted for study site, age, sex, onset date and chronic conditions. Results: We included 3483 patients: 376 influenza A(H3N2) and 928 B cases, and 2028 controls. Most (>99%) vaccinated patients received the B lineage-mismatched trivalent vaccine. IVE against influenza A(H3N2) was 24% (95% CI: 2 to 40); 35% (95% CI: 6 to 55) in 65- to 79-year-olds and 14% (95% CI: -22 to 39) in ≥80-year-olds. Against influenza B, IVE was 30% (95% CI: 16 to 41); 37% (95% CI: 19 to 51) in 65- to 79-year-olds and 19% (95% CI: -7 to 38) in ≥80-year-olds. Conclusions: IVE against influenza B was similar to A(H3N2) in hospitalised older adults, despite trivalent vaccine and circulating B lineage mismatch, suggesting some cross-protection. IVE was lower in those ≥80 than 65-79 years. We reinforce the importance of influenza vaccination in older adults as, even with a poorly matched vaccine, it still protects one in three to four of this population from severe influenza.
