Percorrer por autor "Kim, Yoonhee"
A mostrar 1 - 9 de 9
Resultados por página
Opções de ordenação
- Comparison of weather station and climate reanalysis data for modelling temperature-related mortalityPublication . Mistry, Malcolm N.; Schneider, Rochelle; Masselot, Pierre; Royé, Dominic; Armstrong, Ben; Kyselý, Jan; Orru, Hans; Sera, Francesco; Tong, Shilu; Lavigne, Éric; Urban, Aleš; Madureira, Joana; García-León, David; Ibarreta, Dolores; Ciscar, Juan-Carlos; Feyen, Luc; de Schrijver, Evan; de Sousa Zanotti Stagliorio Coelho, Micheline; Pascal, Mathilde; Tobias, Aurelio; Alahmad, Barrak; Abrutzky, Rosana; Saldiva, Paulo Hilario Nascimento; Correa, Patricia Matus; Orteg, Nicolás Valdés; Kan, Haidong; Osorio, Samuel; Indermitte, Ene; Jaakkola, Jouni J.K.; Ryti, Niilo; Schneider, Alexandra; Huber, Veronika; Katsouyanni, Klea; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Michelozzi, Paola; de’Donato, Francesca; Hashizume, Masahiro; Kim, Yoonhee; Diaz, Magali Hurtado; De la Cruz Valencia, César; Overcenco, Ala; Houthuijs, Danny; Ameling, Caroline; Rao, Shilpa; Seposo, Xerxes; Nunes, Baltazar; Holobaca, Iulian-Horia; Kim, Ho; Lee, Whanhee; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Guo, Yue-Liang Leon; Chen, Bing-Yu; Colistro, Valentina; Zanobetti, Antonella; Schwartz, Joel; Dang, Tran Ngoc; Van Dung, Do; Guo, Yuming; Vicedo-Cabrera, Ana M.; Gasparrini, AntonioEpidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data. Our findings show that reanalysis temperature from the last ERA5 products generally compare well to station observations, with similar non-optimal temperature-related risk estimates. However, the analysis offers some indication of lower performance in tropical regions, with a likely underestimation of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure variables in epidemiological analyses of temperature-related risk.
- Geographical Variations of the Minimum Mortality Temperature at a Global ScalePublication . Tobías, Aurelio; Hashizume, Masahiro; Honda, Yasushi; Sera, Francesco; Ng, Chris Fook Sheng; Kim, Yoonhee; Roye, Dominic; Chung, Yeonseung; Dang, Tran Ngoc; Kim, Ho; Lee, Whanhee; Íñiguez, Carmen; Vicedo-Cabrera, Ana; Abrutzky, Rosana; Guo, Yuming; Tong, Shilu; Coelho, Micheline de Sousa Zanotti Stagliorio; Saldiva, Paulo Hilario Nascimento; Lavigne, Eric; Correa, Patricia Matus; Ortega, Nicolás Valdés; Kan, Haidong; Osorio, Samuel; Kyselý, Jan; Urban, Aleš; Orru, Hans; Indermitte, Ene; Jaakkola, Jouni J.K.; Ryti, Niilo R.I.; Pascal, Mathilde; Huber, Veronika; Schneider, Alexandra; Katsouyanni, Klea; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Goodman, Patrick; Zeka, Ariana; Michelozzi, Paola; de’Donato, Francesca; Alahmad, Barrak; Diaz, Magali Hurtado; De la Cruz Valencia, César; Overcenco, Ala; Houthuijs, Danny; Ameling, Caroline; Rao, Shilpa; Di Ruscio, Francesco; Carrasco, Gabriel; Seposo, Xerxes; Nunes, Baltazar; Madureira, Joana; Holobaca, Iulian-Horia; Scovronick, Noah; Acquaotta, Fiorella; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Guo, Yue-Liang Leon; Chen, Bing-Yu; Li, Shanshan; Colistro, Valentina; Zanobetti, Antonella; Schwartz, Joel; Dung, Do Van; Armstrong, Ben; Gasparrini, AntonioBackground: Minimum mortality temperature (MMT) is an important indicator to assess the temperature-mortality association, indicating long-term adaptation to local climate. Limited evidence about the geographical variability of the MMT is available at a global scale. Methods: We collected data from 658 communities in 43 countries under different climates. We estimated temperature-mortality associations to derive the MMT for each community using Poisson regression with distributed lag nonlinear models. We investigated the variation in MMT by climatic zone using a mixed-effects meta-analysis and explored the association with climatic and socioeconomic indicators. Results: The geographical distribution of MMTs varied considerably by country between 14.2 and 31.1 °C decreasing by latitude. For climatic zones, the MMTs increased from alpine (13.0 °C) to continental (19.3 °C), temperate (21.7 °C), arid (24.5 °C), and tropical (26.5 °C). The MMT percentiles (MMTPs) corresponding to the MMTs decreased from temperate (79.5th) to continental (75.4th), arid (68.0th), tropical (58.5th), and alpine (41.4th). The MMTs indreased by 0.8 °C for a 1 °C rise in a community's annual mean temperature, and by 1 °C for a 1 °C rise in its SD. While the MMTP decreased by 0.3 centile points for a 1 °C rise in a community's annual mean temperature and by 1.3 for a 1 °C rise in its SD. Conclusions: The geographical distribution of the MMTs and MMTPs is driven mainly by the mean annual temperature, which seems to be a valuable indicator of overall adaptation across populations. Our results suggest that populations have adapted to the average temperature, although there is still more room for adaptation.
- Global, regional, and national burden of mortality associated with cold spells during 2000–19: a three-stage modelling studyPublication . Gao, Yuan; Huang, Wenzhong; Zhao, Qi; Ryti, Niilo; Armstrong, Ben; Gasparrini, Antonio; Tong, Shilu; Pascal, Mathilde; Urban, Aleš; Zeka, Ariana; Lavigne, Eric; Madureira, Joana; Goodman, Patrick; Huber, Veronika; Forsberg, Bertil; Kyselý, Jan; Sera, Francesco; Guo, Yuming; Li, Shanshan; Gao, Yuan; Huang, Wenzhong; Zhao, Qi; Ryti, Niilo; Armstrong, Ben; Gasparrini, Antonio; Tong, Shilu; Pascal, Mathilde; Urban, Aleš; Zeka, Ariana; Lavigne, Eric; Madureira, Joana; Goodman, Patrick; Huber, Veronika; Forsberg, Bertil; Kyselý, Jan; Sera, Francesco; Bell, Michelle; Simon Hales; Honda, Yasushi; Jaakkola, Jouni J.K.; Tobias, Aurelio; Vicedo-Cabrera, Ana Maria; Abrutzky, Rosana; Coelho, Micheline de Sousa Zanotti Stagliorio; Saldiva, Paulo Hilario Nascimento; Correa, Patricia Matus; Ortega, Nicolás Valdés; Kan, Haidong; Osorio, Samuel; Roye, Dominic; Orru, Hans; Indermitte, Ene; Schneider, Alexandra; Katsouyanni, Klea; Analitis, Antonis; Carlsen, Hanne Krage; Mayvaneh, Fatemeh; Roradeh, Hematollah; Raz, Raanan; Michelozzi, Paola; de'Donato, Francesca; Hashizume, Masahiro; Kim, Yoonhee; Alahmad, Barrak; Cauchy, John Paul; Diaz, Magali Hurtado; Arellano, Eunice Elizabeth Félix; Valencia, César De la Cruz; Overcenco, Ala; Houthuijs, Danny; Ameling, Caroline; Rao, Shilpa; Carrasco, Gabriel; Seposo, Xerxes; Chua, Paul Lester Carlos; Silva, Susana das Neves Pereira da; Nunes, Baltazar; Holobaca, Iulian-Horia; Cvijanovic, Ivana; Mistry, Malcolm; Scovronick, Noah; Acquaotta, Fiorella; Kim, Ho; Lee, Whanhee; Íñiguez, Carmen; Åström, Christofer; Ragettli, Martina S.; Guo, Yue Leon; Pan, Shih-Chun; Colistro, Valentina; Zanobetti, Antonella; Schwartz, Joel; Dang, Tran Ngoc; Dung, Do Van; Guo, Yuming; Li, ShanshanBackground: Exposure to cold spells is associated with mortality. However, little is known about the global mortality burden of cold spells. Methods: A three-stage meta-analytical method was used to estimate the global mortality burden associated with cold spells by means of a time series dataset of 1960 locations across 59 countries (or regions). First, we fitted the location-specific, cold spell-related mortality associations using a quasi-Poisson regression with a distributed lag non-linear model with a lag period of up to 21 days. Second, we built a multivariate meta-regression model between location-specific associations and seven predictors. Finally, we predicted the global grid-specific cold spell-related mortality associations during 2000-19 using the fitted meta-regression model and the yearly grid-specific meta-predictors. We calculated the annual excess deaths, excess death ratio (excess deaths per 1000 deaths), and excess death rate (excess deaths per 100 000 population) due to cold spells for each grid across the world. Findings: Globally, 205 932 (95% empirical CI [eCI] 162 692-250 337) excess deaths, representing 3·81 (95% eCI 2·93-4·71) excess deaths per 1000 deaths (excess death ratio), and 3·03 (2·33-3·75) excess deaths per 100 000 population (excess death rate) were associated with cold spells per year between 2000 and 2019. The annual average global excess death ratio in 2016-19 increased by 0·12 percentage points and the excess death rate in 2016-19 increased by 0·18 percentage points, compared with those in 2000-03. The mortality burden varied geographically. The excess death ratio and rate were highest in Europe, whereas these indicators were lowest in Africa. Temperate climates had higher excess death ratio and rate associated with cold spells than other climate zones. Interpretation: Cold spells are associated with substantial mortality burden around the world with geographically varying patterns. Although the number of cold spells has on average been decreasing since year 2000, the public health threat of cold spells remains substantial. The findings indicate an urgency of taking local and regional measures to protect the public from the mortality burdens of cold spells. Funding: Australian Research Council, Australian National Health and Medical Research Council, EU's Horizon 2020 Project Exhaustion.
- Projections of excess mortality related to diurnal temperature range under climate change scenarios: a multi-country modelling studyPublication . Lee, Whanhee; Kim, Yoonhee; Sera, Francesco; Gasparrini, Antonio; Park, Rokjin; Michelle Choi, Hayon; Prifti, Kristi; Bell, Michelle L.; Abrutzky, Rosana; Guo, Yuming; Tong, Shilu; de Sousa Zanotti Stagliorio Coelho, Micheline; Nascimento Saldiva, Paulo Hilario; Lavigne, Eric; Orru, Hans; Indermitte, Ene; Jaakkola, Jouni J.K.; Ryti, Niilo R.I.; Pascal, Mathilde; Goodman, Patrick; Zeka, Ariana; Hashizume, Masahiro; Honda, Yasushi; Hurtado Diaz, Magali; César Cruz, Julio; Overcenco, Ala; Nunes, Baltazar; Madureira, Joana; Scovronick, Noah; Acquaotta, Fiorella; Tobias, Aurelio; Vicedo-Cabrera, Ana Maria; Ragettli, Martina S.; Guo, Yue-Liang Leon; Chen, Bing-Yu; Li, Shanshan; Armstrong, Ben; Zanobetti, Antonella; Schwartz, Joel; Kim, HoBackground: Various retrospective studies have reported on the increase of mortality risk due to higher diurnal temperature range (DTR). This study projects the effect of DTR on future mortality across 445 communities in 20 countries and regions. Methods: DTR-related mortality risk was estimated on the basis of the historical daily time-series of mortality and weather factors from Jan 1, 1985, to Dec 31, 2015, with data for 445 communities across 20 countries and regions, from the Multi-Country Multi-City Collaborative Research Network. We obtained daily projected temperature series associated with four climate change scenarios, using the four representative concentration pathways (RCPs) described by the Intergovernmental Panel on Climate Change, from the lowest to the highest emission scenarios (RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5). Excess deaths attributable to the DTR during the current (1985-2015) and future (2020-99) periods were projected using daily DTR series under the four scenarios. Future excess deaths were calculated on the basis of assumptions that warmer long-term average temperatures affect or do not affect the DTR-related mortality risk. Findings: The time-series analyses results showed that DTR was associated with excess mortality. Under the unmitigated climate change scenario (RCP 8.5), the future average DTR is projected to increase in most countries and regions (by -0·4 to 1·6°C), particularly in the USA, south-central Europe, Mexico, and South Africa. The excess deaths currently attributable to DTR were estimated to be 0·2-7·4%. Furthermore, the DTR-related mortality risk increased as the long-term average temperature increased; in the linear mixed model with the assumption of an interactive effect with long-term average temperature, we estimated 0·05% additional DTR mortality risk per 1°C increase in average temperature. Based on the interaction with long-term average temperature, the DTR-related excess deaths are projected to increase in all countries or regions by 1·4-10·3% in 2090-99. Interpretation: This study suggests that globally, DTR-related excess mortality might increase under climate change, and this increasing pattern is likely to vary between countries and regions. Considering climatic changes, our findings could contribute to public health interventions aimed at reducing the impact of DTR on human health.
- Rainfall events and daily mortality across 645 global locations: two stage time series analysisPublication . He, Cheng; Breitner-Busch, Susanne; Huber, Veronika; Chen, Kai; Zhang, Siqi; Gasparrini, Antonio; Bell, Michelle; Kan, Haidong; Royé, Dominic; Armstrong, Ben; Schwartz, Joel; Sera, Francesco; Vicedo-Cabrera, Ana Maria; Honda, Yasushi; Jaakkola, Jouni J.K.; Ryti, Niilo; Kyselý, Jan; Guo, Yuming; Tong, Shilu; de’Donato, Francesca; Michelozzi, Paola; Coelho, Micheline de Sousa Zanotti Staglior; Saldiva, Paulo Hilario Nascimento; Lavigne, Eric; Orru,Hans; Indermitte, Ene; Pascal, Mathilde; Goodman, Patrick; Zeka, Ariana; Kim, Yoonhee; Diaz, Magali Hurtado; Arellano, Eunice Elizabeth Félix; Overcenco, Ala; Klompmaker, Jochem; Rao, Shilpa; Palomares, Alfonso Diz-Lois; Carrasco, Gabriel; Seposo, Xerxes; das Neves Pereira da Silva, Susana; Joana Madureira; Holobaca, Iulian-Horia; Scovronick, Noah; Acquaotta, Fiorella; Kim, Ho; Lee, Whanhee; Hashizume, Masahiro; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Ragettli, Martina S.; Guo, Yue Leon; Pan, Shih-Chun; Osorio, Samuel; Li, Shanshan; Zanobetti, Antonella; Dang, Tran Ngoc; Dung, Do Van; Schneider. AlexandraObjective: To examine the associations between characteristics of daily rainfall (intensity, duration, and frequency) and all cause, cardiovascular, and respiratory mortality. Design: Two stage time series analysis. Setting: 645 locations across 34 countries or regions. Population: Daily mortality data, comprising a total of 109 954 744 all cause, 31 164 161 cardiovascular, and 11 817 278 respiratory deaths from 1980 to 2020. Main outcome measure: Association between daily mortality and rainfall events with return periods (the expected average time between occurrences of an extreme event of a certain magnitude) of one year, two years, and five years, with a 14 day lag period. A continuous relative intensity index was used to generate intensity-response curves to estimate mortality risks at a global scale. Results: During the study period, a total of 50 913 rainfall events with a one year return period, 8362 events with a two year return period, and 3301 events with a five year return period were identified. A day of extreme rainfall with a five year return period was significantly associated with increased daily all cause, cardiovascular, and respiratory mortality, with cumulative relative risks across 0-14 lag days of 1.08 (95% confidence interval 1.05 to 1.11), 1.05 (1.02 to 1.08), and 1.29 (1.19 to 1.39), respectively. Rainfall events with a two year return period were associated with respiratory mortality only, whereas no significant associations were found for events with a one year return period. Non-linear analysis revealed protective effects (relative risk <1) with moderate-heavy rainfall events, shifting to adverse effects (relative risk >1) with extreme intensities. Additionally, mortality risks from extreme rainfall events appeared to be modified by climate type, baseline variability in rainfall, and vegetation coverage, whereas the moderating effects of population density and income level were not significant. Locations with lower variability of baseline rainfall or scarce vegetation coverage showed higher risks. Conclusion: Daily rainfall intensity is associated with varying health effects, with extreme events linked to an increasing relative risk for all cause, cardiovascular, and respiratory mortality. The observed associations varied with local climate and urban infrastructure.
- Regional variation in the role of humidity on city-level heat-related mortalityPublication . Guo, Qiang; Mistry, Malcolm N.; Zhou, Xudong; Zhao, Gang; Kino, Kanon; Wen, Bo; Yoshimura, Kei; Satoh, Yusuke; Cvijanovic, Ivana; Kim, Yoonhee; Ng, Chris Fook Sheng; Vicedo-Cabrera, Ana M.; Armstrong, Ben; Urban, Aleš; Katsouyanni, Klea; Masselot, Pierre; Tong, Shilu; Sera, Francesco; Huber, Veronika; Bell, Michelle L.; Kyselý, Jan; Gasparrini, Antonio; Hashizume, Masahiro; Oki, Taikan; Abrutzky, Rosana; Guo, Yuming; de Sousa Zanotti Stagliorio Coelho, Micheline; Nascimento Saldiva, Paulo Hilario; Lavigne, Eric; Ortega, Nicolás Valdés; Correa, Patricia Matus; Kan, Haidong; Osorio, Samuel; Roye, Dominic; Indermitte, Ene; Orru, Hans; Jaakkola, Jouni J K.; Ryti, Niilo; Pascal, Mathilde; Schneider, Alexandra; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Zeka, Ariana; Goodman, Patrick; de'Donato, Francesca; Michelozzi, Paola; Alahmad, Barrak; De la Cruz Valencia, César; Hurtado Diaz, Magali; Overcenco, Ala; Ameling, Caroline; Houthuijs, Danny; Rao, Shilpa; Carrasco, Gabriel; Seposo, Xerxes; Madureira, Joana; Silva, Susana; Holobaca, Iulian-Horia; Acquaotta, Fiorella; Scovronick, Noah; Kim, Ho; Lee, Whanhee; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Ragettli, Martina S.; Pan, Shih-Chun; Guo, Yue Leon; Li, Shanshan; Schneider, Rochelle; Colistro, Valentina; Zanobetti, Antonella; Schwartz, Joel; Van Dung, Do; Ngoc Dang, Tran; Honda, YasushiThe rising humid heat is regarded as a severe threat to human survivability, but the proper integration of humid heat into heat-health alerts is still being explored. Using state-of-the-art epidemiological and climatological datasets, we examined the association between multiple heat stress indicators (HSIs) and daily human mortality in 739 cities worldwide. Notable differences were observed in the long-term trends and timing of heat events detected by HSIs. Air temperature (Tair) predicts heat-related mortality well in cities with a robust negative Tair-relative humidity correlation (CT-RH). However, in cities with near-zero or weak positive CT-RH, HSIs considering humidity provide enhanced predictive power compared to Tair. Furthermore, the magnitude and timing of heat-related mortality measured by HSIs could differ largely from those associated with Tair in many cities. Our findings provide important insights into specific regions where humans are vulnerable to humid heat and can facilitate the further enhancement of heat-health alert systems.
- Temperature frequency and mortality: Assessing adaptation to local temperaturePublication . Wu, Yao; Wen, Bo; Gasparrini, Antonio; Armstrong, Ben; Sera, Francesco; Lavigne, Eric; Li, Shanshan; Guo, Yuming; Overcenco, Ala; Urban, Aleš; Schneider, Alexandra; Entezari, Alireza; Vicedo-Cabrera, Ana Maria; Zanobetti, Antonella; Analitis, Antonis; Zeka, Ariana; Tobias, Aurelio; Nunes, Baltazar; Alahmad, Barrak; Forsberg, Bertil; Íñiguez, Carmen; Ameling, Caroline; Cruz Valencia, César De la; Houthuijs, Danny; Dung, Do Van; Roye, Dominic; Indermitte, Ene; Mayvaneh, Fatemeh; Acquaotta, Fiorella; de'Donato, Francesca; Carrasco-Escobar, Gabriel; Kan, Haidong; Carlsen, Hanne Krage; Orru, Hans; Kim, Ho; Holobaca, Iulian-Horia; Kyselý, Jan; Madureira, Joana; Schwartz, Joel; Jaakkola, Jouni J.K.; Katsouyanni, Klea; Diaz, Magali Hurtado; Ragettli, Martina S.; Hashizume, Masahiro; Pascal, Mathilde; Coelho, Micheline de Sousa Zanotti Stagliorio; Ortega, Nicolás Valdés; Ryti, Niilo; Scovronick, Noah; Michelozzi, Paola; Correa, Patricia Matus; Goodman, Patrick; Saldiva, Paulo Hilario Nascimento; Raz, Raanan; Abrutzky, Rosana; Osorio, Samuel; Pan, Shih-Chun; Rao, Shilpa; Tong, Shilu; Achilleos, Souzana; Dang, Tran Ngoc; Colistro, Valentina; Huber, Veronika; Lee, Whanhee; Seposo, Xerxes; Honda, Yasushi; Kim, Yoonhee; Guo, Yue Leon; Li, Shanshan; Guo, YumingAssessing the association between temperature frequency and mortality can provide insights into human adaptation to local ambient temperatures. We collected daily time-series data on mortality and temperature from 757 locations in 47 countries/regions during 1979–2020. We used a two-stage time series design to assess the association between temperature frequency and all-cause mortality. The results were pooled at the national, regional, and global levels. We observed a consistent decrease in the risk of mortality as the normalized frequency of temperature increases across the globe. The average increase in mortality risk comparing the 10th to 100th percentile of normalized frequency was 13.03% (95% CI: 12.17–13.91), with substantial regional differences (from 4.56% in Australia and New Zealand to 33.06% in South Europe). The highest increase in mortality was observed for high-income countries (13.58%, 95% CI: 12.56–14.61), followed by lower-middle-income countries (12.34%, 95% CI: 9.27–15.51). This study observed a declining risk of mortality associated with higher temperature frequency. Our findings suggest that populations can adapt to their local climate with frequent exposure, with the adapting ability varying geographically due to differences in climatic and socioeconomic characteristics.
- Temporal change in minimum mortality temperature under changing climate: A multicountry multicommunity observational study spanning 1986-2015Publication . Yang, Daewon; Hashizume, Masahiro; Tobías, Aurelio; Honda, Yasushi; Roye, Dominic; Oh, Jaemin; Dang, Tran Ngoc; Kim, Yoonhee; Abrutzky, Rosana; Guo, Yuming; Tong, Shilu; Coelho, Micheline de Sousa Zanotti Stagliorio; Saldiva, Paulo Hilario Nascimento; Lavigne, Eric; Correa, Patricia Matus; Ortega, Nicolás Valdés; Osorio, Samuel; Kyselý, Jan; Urban, Aleš; Orru, Hans; Indermitte, Ene; Jaakkola, Jouni; Ryti, Niilo; Pascal, Mathilde; Huber, Veronika; Schneider, Alexandra; Katsouyanni, Klea; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Goodman, Patrick; Zeka, Ariana; Michelozzi, Paola; de'Donato, Francesca; Alahmad, Barrak; Diaz, Magali Hurtado; la Cruz Valencia, César De; Overcenco, Ala; Houthuijs, Danny; Ameling, Caroline; Rao, Shilpa; Nunes, Baltazar; Madureira, Joana; Holo-Bâc, Iulian Horia; Scovronick, Noah; Acquaotta, Fiorella; Kim, Ho; Lee, Whanhee; Íñiguez, Carmen; Forsberg, Bertil; Vicedo-Cabrera, Ana Maria; Ragettli, Martina S; Guo, Yue-Liang Leon; Pan, Shih Chun; Li, Shanshan; Sera, Francesco; Zanobetti, Antonella; Schwartz, Joel; Armstrong, Ben; Gasparrini, Antonio; Chung, YeonseungBackground: The minimum mortality temperature (MMT) or MMT percentile (MMTP) is an indicator of population susceptibility to nonoptimum temperatures. MMT and MMTP change over time; however, the changing directions show region-wide heterogeneity. We examined the heterogeneity of temporal changes in MMT and MMTP across multiple communities and in multiple countries. Methods: Daily time-series data for mortality and ambient mean temperature for 699 communities in 34 countries spanning 1986-2015 were analyzed using a two-stage meta-analysis. First, a quasi-Poisson regression was employed to estimate MMT and MMTP for each community during the designated subperiods. Second, we pooled the community-specific temporally varying estimates using mixed-effects meta-regressions to examine temporal changes in MMT and MMTP in the entire study population, as well as by climate zone, geographical region, and country. Results: Temporal increases in MMT and MMTP from 19.5 °C (17.9, 21.1) to 20.3 °C (18.5, 22.0) and from the 74.5 (68.3, 80.6) to 75.0 (71.0, 78.9) percentiles in the entire population were found, respectively. Temporal change was significantly heterogeneous across geographical regions (P < 0.001). Temporal increases in MMT were observed in East Asia (linear slope [LS] = 0.91, P = 0.02) and South-East Asia (LS = 0.62, P = 0.05), whereas a temporal decrease in MMT was observed in South Europe (LS = -0.46, P = 0.05). MMTP decreased temporally in North Europe (LS = -3.45, P = 0.02) and South Europe (LS = -2.86, P = 0.05). Conclusions: The temporal change in MMT or MMTP was largely heterogeneous. Population susceptibility in terms of optimum temperature may have changed under a warming climate, albeit with large region-dependent variations.
- Temporal variations in the short-term effects of ambient air pollution on cardiovascular and respiratory mortality: a pooled analysis of 380 urban areas over a 22-year periodPublication . Schwarz, Maximilian; Peters, Annette; Stafoggia, Massimo; de'Donato, Francesca; Sera, Francesco; Bell, Michelle L; Guo, Yuming; Honda, Yasushi; Huber, Veronika; Jaakkola, Jouni J.K.; Urban, Aleš; Vicedo-Cabrera, Ana Maria; Masselot, Pierre; Lavigne, Eric; Achilleos, Souzana; Kyselý, Jan; Samoli, Evangelia; Hashizume, Masahiro; Fook Sheng Ng, Chris; Silva, Susana; Madureira, Joana; Garland, Rebecca M.; Tobias, Aurelio; Armstrong, Ben; Schwartz, Joel; Gasparrini, Antonio; Schneider, Alexandra; Breitner, Susanne; Kan, Haidong; Osorio, Samuel; Orru, Hans; Indermitte, Ene; Maasikmets, Marek; Ryti, Niilo; Pascal, Mathilde; Katsouyanni, Klea; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Kim, Yoonhee; Alahmad, Barrak; Hurtado Diaz, Magali; Félix Arellano, Eunice Elizabeth; Rao, Shilpa; Diz-Lois Palomares, Alfonso; Scovronick, Noah; Acquaotta, Fiorella; Kim, Ho; Lee, Whanhee; Íñiguez, Carmen; Forsberg, Bertil; Ragettli, Martina S.; Guo, Yue Leon; Pan, Shih-Chun; Li, Shanshan; Zanobetti, AntonellaBackground: Ambient air pollution, including particulate matter (such as PM10 and PM2·5) and nitrogen dioxide (NO2), has been linked to increases in mortality. Whether populations' vulnerability to these pollutants has changed over time is unclear, and studies on this topic do not include multicountry analysis. We evaluated whether changes in exposure to air pollutants were associated with changes in mortality effect estimates over time. Methods: We extracted cause-specific mortality and air pollution data collected between 1995 and 2016 from the Multi-Country Multi-City (MCC) Collaborative Research Network database. We applied a two-stage approach to analyse the short-term effects of NO2, PM10, and PM2·5 on cause-specific mortality using city-specific time series regression analyses and multilevel random-effects meta-analysis. We assessed changes over time using a longitudinal meta-regression with time as a linear fixed term and explored potential sources of heterogeneity and two-pollutant models. Findings: Over 21·6 million cardiovascular and 7·7 million respiratory deaths in 380 cities across 24 countries over the study period were included in the analysis. All three air pollutants showed decreasing concentrations over time. The pooled results suggested no significant temporal change in the effect estimates per unit exposure of PM10, PM2·5, or NO2 and mortality. However, the risk of cardiovascular mortality increased from 0·37% (95% CI -0·05 to 0·80) in 1998 to 0·85% (0·55 to 1·16) in 2012 with a 10 μg/m3 increase in PM2·5. Two-pollutant models generally showed similar results to single-pollutant models for PM fractions and indicated temporal differences for NO2. Interpretation: Although air pollution levels decreased during the study period, the effect sizes per unit increase in air pollution concentration have not changed. This observation might be due to the composition, toxicity, and sources of air pollution, as well as other factors, such as socioeconomic determinants or changes in population distribution and susceptibility.
