Browsing by Author "Jensen, Annie"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- DNA strand break levels in cryopreserved mononuclear blood cell lines measured by the alkaline comet assay: results from the hCOMET ring trialPublication . Møller, Peter; Azqueta, Amaya; Rodriguez-Garraus, Adriana; Bakuradze, Tamara; Richling, Elke; Bankoglu, Ezgi Eyluel; Stopper, Helga; Claudino Bastos, Victoria; Langie, Sabine A.S.; Jensen, Annie; Ristori, Sara; Scavone, Francesca; Giovannelli, Lisa; Wojewódzka, Maria; Kruszewski, Marcin; Valdiglesias, Vanessa; Laffon, Blanca; Costa, Carla; Costa, Solange; Paulo Teixeira, João; Marino, Mirko; Del Bo, Cristian; Riso, Patrizia; Zheng, Congying; Shaposhnikov, Sergey; Collins, AndrewThe comet assay is widely used in biomonitoring studies for the analysis of DNA damage in leukocytes and peripheral blood mononuclear cells. Rather than processing blood samples directly, it can be desirable to cryopreserve whole blood or isolated cells for later analysis by the comet assay. However, this creates concern about artificial accumulation of DNA damage during cryopreservation. In this study, 10 laboratories used standardized cryopreservation and thawing procedures of monocytic (THP-1) or lymphocytic (TK6) cells. Samples were cryopreserved in small aliquots in 50% foetal bovine serum, 40% cell culture medium, and 10% dimethyl sulphoxide. Subsequently, cryopreserved samples were analysed by the standard comet assay on three occasions over a 3-year period. Levels of DNA strand breaks in THP-1 cells were increased (four laboratories), unaltered (four laboratories), or decreased (two laboratories) by long-term storage. Pooled analysis indicates only a modest positive association between storage time and levels of DNA strand breaks in THP-1 cells (0.37% Tail DNA per year, 95% confidence interval: -0.05, 0.78). In contrast, DNA strand break levels were not increased by cryopreservation in TK6 cells. There was inter-laboratory variation in levels of DNA strand breaks in THP-1 cells (SD = 3.7% Tail DNA) and TK6 reference sample cells (SD = 9.4% Tail DNA), whereas the intra-laboratory residual variation was substantially smaller (i.e. SD = 0.4%-2.2% Tail DNA in laboratories with the smallest and largest variation). In conclusion, the study shows that accumulation of DNA strand breaks in cryopreserved mononuclear blood cell lines is not a matter of concern.
- Inter-laboratory variation in measurement of DNA damage by the alkaline comet assay in the hCOMET ring trialPublication . Møller, Peter; Azqueta, Amaya; Collia, Miguel; Bakuradze, Tamara; Richling, Elke; Bankoglu, Ezgi Eyluel; Stopper, Helga; Bastos, Victoria Claudino; Langie, Sabine A.S.; Jensen, Annie; Ristori, Sara; Scavone, Francesca; Giovannelli, Lisa; Wojewódzka, Maria; Kruszewski, Marcin; Valdiglesias, Vanessa; Laffon, Blanca; Costa, Carla; Costa, Solange; Teixeira, João Paulo; Marino, Mirko; Del Bo, Cristian; Riso, Patrizia; Zheng, Congying; Shaposhnikov, Sergey; Collins, AndrewThe comet assay is a simple and versatile method for measurement of DNA damage in eukaryotic cells. More specifically, the assay detects DNA migration from agarose gel-embedded nucleoids, which depends on assay conditions and the level of DNA damage. Certain steps in the comet assay procedure have substantial impact on the magnitude of DNA migration (e.g. electric potential and time of electrophoresis). Inter-laboratory variation in DNA migration levels occurs because there is no agreement on optimal assay conditions or suitable assay controls. The purpose of the hCOMET ring trial was to test potassium bromate (KBrO3) as a positive control for the formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay. To this end, participating laboratories used semi-standardized protocols for cell culture (i.e. cell culture, KBrO3 exposure, and cryopreservation of cells) and comet assay procedures, whereas the data acquisition was not standardized (i.e. staining of comets and image analysis). Segregation of the total variation into partial standard deviation (SD) in % Tail DNA units indicates the importance of cell culture procedures (SD = 10.9), comet assay procedures (SD = 12.3), staining (SD = 7.9) and image analysis (SD = 0.5) on the overall inter-laboratory variation of DNA migration (SD = 18.2). Future studies should assess sources of variation in each of these steps. On the positive side, the hCOMET ring trial demonstrates that KBrO3 is a robust positive control for the Fpg-modified comet assay. In conclusion, the hCOMET ring trial has demonstrated a high reproducibility of detecting genotoxic effects by the comet assay, but inter-laboratory variation of DNA migration levels is a concern.
- Long-term cryopreservation of potassium bromate positive assay controls for measurement of oxidatively damaged DNA by the Fpg-modified comet assay: results from the hCOMET ring trialPublication . Møller, Peter; Azqueta, Amaya; Rodriguez-Garraus, Adriana; Bakuradze, Tamara; Richling, Elke; Bankoglu, Ezgi Eyluel; Stopper, Helga; Claudino Bastos, Victoria; Langie, Sabine A.S.; Jensen, Annie; Ristori, Sara; Scavone, Francesca; Giovannelli, Lisa; Wojewódzka, Maria; Kruszewski, Marcin; Valdiglesias, Vanessa; Laffon, Blanca; Costa, Carla; Costa, Solange; Paulo Teixeira, João; Marino, Mirko; Del Bo’, Cristian; Riso, Patrizia; Zheng, Congying; Shaposhnikov, Sergey; Collins, AndrewThe formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay is widely used for the measurement of oxidatively generated damage to DNA. However, there has not been a recommended long-term positive control for this version of the comet assay. We have investigated potassium bromate as a positive control for the Fpg-modified comet assay because it generates many Fpg-sensitive sites with a little concurrent generation of DNA strand breaks. Eight laboratories used the same procedure for the treatment of monocytic THP-1 cells with potassium bromate (0, 0.5, 1.5, and 4.5 mM) and subsequent cryopreservation in a freezing medium consisting of 50% foetal bovine serum, 40% RPMI-1640 medium, and 10% dimethyl sulphoxide. The samples were analysed by the Fpg-modified comet assay three times over a 3-year period. All laboratories obtained a positive concentration-response relationship in cryopreserved samples (linear regression coefficients ranging from 0.79 to 0.99). However, there was a wide difference in the levels of Fpg-sensitive sites between the laboratory with the lowest (4.2% Tail DNA) and highest (74% Tail DNA) values in THP-1 cells after exposure to 4.5 mM KBrO3. In an attempt to assess sources of inter-laboratory variation in Fpg-sensitive sites, comet images from one experiment in each laboratory were forwarded to a central laboratory for visual scoring. There was high consistency between measurements of %Tail DNA values in each laboratory and the visual score of the same comets done in the central laboratory (r = 0.98, P < 0.001, linear regression). In conclusion, the results show that potassium bromate is a suitable positive comet assay control.
- Potassium bromate as positive assay control for the Fpg-modified comet assayPublication . Møller, Peter; Muruzabal, Damian; Bakuradze, Tamara; Richling, Elke; Bankoglu, Ezgi Eyluel; Stopper, Helga; Langie, Sabine A.S.; Azqueta, Amaya; Jensen, Annie; Scavone, Francesca; Giovannelli, Lisa; Wojewódzka, Maria; Kruszewski, Marcin; Valdiglesias, Vanessa; Laffon, Blanca; Costa, Carla; Costa, Solange; Teixeira, João Paulo; Marino, Mirko; Del Bo’, Cristian; Riso, Patrizia; Shaposhnikov, Sergey; Collins, AndrewThe comet assay is a popular assay in biomonitoring studies. DNA strand breaks (or unspecific DNA lesions) are measured using the standard comet assay. Oxidative stress-generated DNA lesions can be measured by employing DNA repair enzymes to recognise oxidatively damaged DNA. Unfortunately, there has been a tendency to fail to report results from assay controls (or maybe even not to employ assay controls). We believe this might have been due to uncertainty as to what really constitutes a positive control. It should go without saying that a biomonitoring study cannot have a positive control group as it is unethical to expose healthy humans to DNA damaging (and thus potentially carcinogenic) agents. However, it is possible to include assay controls in the analysis (here meant as a cryopreserved sample of cells i.e. included in each experiment as a reference sample). In the present report we tested potassium bromate (KBrO3) as a positive comet assay control for the formamidopyrimidine DNA glycosylase (Fpg)-modified comet assay. Ten laboratories used the same procedure for treatment of monocytic THP-1 cells with KBrO3 (0.5, 1.5 and 4.5 mM for 1 h at 37°C) and subsequent cryopreservation. Results from one laboratory were excluded in the statistical analysis because of technical issues in the Fpg-modified comet assay. All other laboratories found a concentration-response relationship in cryopreserved samples (regression coefficients from 0.80 to 0.98), although with different slopes ranging from 1.25 to 11.9 Fpg-sensitive sites (%DNA in tail) per 1 mM KBrO3. Our results demonstrate that KBrO3 is a suitable positive comet assay control.
- Visual comet scoring revisited: a guide to scoring comet assay slides and obtaining reliable resultsPublication . Møller, Peter; Azqueta, Amaya; Sanz-Serrano, Julen; Bakuradze, Tamara; Richling, Elke; Eyluel Bankoglu, Ezgi; Stopper, Helga; Claudino Bastos, Victoria; Langie, Sabine A.S.; Jensen, Annie; Scavone, Francesca; Giovannelli, Lisa; Wojewódzka, Maria; Kruszewski, Marcin; Valdiglesias, Vanessa; Laffon, Blanca; Costa, Carla; Costa, Solange; Teixeira, João Paulo; Marino, Mirko; Del Bo, Cristian; Riso, Patrizia; Zheng, Congying; Shaposhnikov, Sergey; Collins, AndrewMeasurement of DNA migration in the comet assay can be done by image analysis or visual scoring. The latter accounts for 20%-25% of the published comet assay results. Here we assess the intra- and inter-investigator variability in visual scoring of comets. We include three training sets of comet images, which can be used as reference for researchers who wish to use visual scoring of comets. Investigators in 11 different laboratories scored the comet images using a five-class scoring system. There is inter-investigator variation in the three training sets of comets (i.e. coefficient of variation (CV) = 9.7%, 19.8%, and 15.2% in training sets I-III, respectively). However, there is also a positive correlation of inter-investigator scoring in the three training sets (r = 0.60). Overall, 36% of the variation is attributed to inter-investigator variation and 64% stems from intra-investigator variation in scoring between comets (i.e. the comets in training sets I-III look slightly different and this gives rise to heterogeneity in scoring). Intra-investigator variation in scoring was also assessed by repeated analysis of the training sets by the same investigator. There was larger variation when the training sets were scored over a period of six months (CV = 5.9%-9.6%) as compared to 1 week (CV = 1.3%-6.1%). A subsequent study revealed a high inter-investigator variation when premade slides, prepared in a central laboratory, were stained and scored by investigators in different laboratories (CV = 105% and 18%-20% in premade slides with comets from unexposed and hydrogen peroxide-exposed cells, respectively). The results indicate that further standardization of visual scoring is desirable. Nevertheless, the analysis demonstrates that visual scoring is a reliable way of analysing DNA migration in comets.
