Browsing by Author "Diogo, L."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Brief report: High frequency of biochemical markers for mitochondrial dysfunction in autism: no association with the mitochondrial aspartate/glutamate carrier SLC25A12 genePublication . Correia, C.; Coutinho, A.M.; Diogo, L.; Grazina, M.; Marques, C.; Miguel, T.; Ataíde, A.; Almeida, J.; Borges, L.; Oliveira, C.; Oliveira, G.; Vicente, A.M.In the present study we confirm the previously reported high frequency of biochemical markers of mitochondrial dysfunction, namely hyperlactacidemia and increased lactate/pyruvate ratio, in a significant fraction of 210 autistic patients. We further examine the involvement of the mitochondrial aspartate/glutamate carrier gene (SLC25A12) in mitochondrial dysfunction associated with autism. We found no evidence of association of the SLC25A12 gene with lactate and lactate/pyruvate distributions or with autism in 241 nuclear families with one affected individual. We conclude that while mitochondrial dysfunction may be one of the most common medical conditions associated with autism, variation at the SLC25A12 gene does not explain the high frequency of mitochondrial dysfunction markers and is not associated with autism in this sample of autistic patients.
- Newborn screening for medium-chain acyl-CoA dehydrogenase deficiency: regional experience and high incidence of carnitine deficiencyPublication . Couce, M.L.; Sánchez-Pintos, P.; Diogo, L.; Leão-Teles, E.; Martins, E.; Santos, H.; Bueno, M.A.; Delgado-Pecellín, C.; Castiñeiras, D.E.; Cocho, J.A.; García-Villoria, J.; Ribes, A.; Fraga, J.M.; Rocha, HugoBACKGROUND: Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the most common inherited defect in the mitochondrial fatty acid oxidation pathway, resulting in significant morbidity and mortality in undiagnosed patients.Newborn screening (NBS) has considerably improved MCADD outcome, but the risk of complication remains in some patients. The aim of this study was to evaluate the relationship between genotype, biochemical parameters and clinical data at diagnosis and during follow-up, in order to optimize monitoring of these patients. METHODS: We carried out a multicenter study in southwest Europe, of MCADD patients detected by NBS. Evaluated NBS data included free carnitine (C0) and the acylcarnitines C8, C10, C10:1 together with C8/C2 and C8/C10 ratios, clinical presentation parameters and genotype, in 45 patients. Follow-up data included C0 levels, duration of carnitine supplementation and occurrence of metabolic crises. RESULTS: C8/C2 ratio and C8 were the most accurate biomarkers of MCADD in NBS. We found a high number of patients homozygous for the prevalent c.985A > G mutation (75%). Moreover, in these patients C8, C8/C10 and C8/C2 were higher than in patients with other genotypes, while median value of C0 was significantly lower (23 μmol/L vs 36 μmol/L).The average follow-up period was 43 months. To keep carnitine levels within the normal range, carnitine supplementation was required in 82% of patients, and for a longer period in patients homozygotes for the c.985A>G mutation than in patients with other genotypes (average 31 vs 18 months). Even with treatment, median C0 levels remained lower in homozygous patients than in those with other genotypes (14 μmol/L vs 22 μmol/L).Two patients died and another three suffered a metabolic crisis, all of whom were homozygous for the c.985 A>G mutation. CONCLUSIONS: Our data show a direct association between homozygosity for c.985A>G and lower carnitine values at diagnosis, and a higher dose of carnitine supplementation for maintenance within the normal range. This study contributes to a better understanding of the relationship between genotype and phenotype in newborn patients with MCADD detected through screening which could be useful in improving follow-up strategies and clinical outcome.
- A Novel SUCLA2 Mutation in a Portuguese Child Associated With "Mild" Methylmalonic AciduriaPublication . Nogueira, Célia; Meschini, M.C.; Nesti, C.; Garcia, P.; Diogo, L.; Valongo, C.; Costa, R.; Videira, A.; Vilarinho, L.; Santorelli, F.M.Succinyl-coenzyme A synthase is a mitochondrial matrix enzyme that catalyzes the reversible synthesis of succinate and adenosine triphosphate (ATP) from succinyl-coenzyme A and adenosine diphosphate (ADP) in the tricarboxylic acid cycle. This enzyme is made up of α and β subunits encoded by SUCLG1 and SUCLA2, respectively. We present a child with severe muscular hypotonia, dystonia, failure to thrive, sensorineural deafness, and dysmorphism. Metabolic investigations disclosed hyperlactacidemia, moderate urinary excretion of methylmalonic acid, and elevated levels of C4-dicarboxylic carnitine in blood. We identified a novel homozygous p.M329V in SUCLA2. In cultured cells, the p.M329V resulted in a reduced amount of the SUCLA2 protein, impaired production of mitochondrial ATP, and enhanced production of reactive oxygen species, which was partially reduced by using 5-aminoimidazole-4-carboxamide ribonucleotide in the culture medium. Expanding the array of SUCLA2 mutations, we suggested that reactive oxygen species scavengers are likely to impact on disease prognosis.
- Phenotype and genotype in 101 males with X-linked creatine transporter deficiencyPublication . van de Kamp, J.M.; Betsalel, O.T.; Mercimek-Mahmutoglu, S.; Abulhoul, L.; Grünewald, S.; Anselm, I.; Azzouz, H.; Bratkovic, D.; de Brouwer, A.; Hamel, B.; Kleefstra, T.; Yntema, H.; Campistol, J.; Vilaseca, M.A.; Cheillan, D.; D'Hooghe, M.; Diogo, L.; Garcia, P.; Valongo, C.; Fonseca, M.; Frints, S.; Wilcken, B.; von der Haar, S.; Meijers-Heijboer, H.E.; Hofstede, F.; Johnson, D.; Kant, S.G.; Lion-Francois, L.; Pitelet, G.; Longo, N.; Maat-Kievit, J.A.; Monteiro, J.P.; Munnich, A.; Muntau, A.C.; Nassogne, M.C.; Osaka, H.; Ounap, K.; Pinard, J.M.; Quijano-Roy, S.; Poggenburg, I.; Poplawski, N.; Abdul-Rahman, O.; Ribes, A.; Arias, A.; Yaplito-Lee, J.; Schulze, A.; Schwartz, C.E.; Schwenger, S.; Soares, G.; Sznajer, Y.; Valayannopoulos, V.; Van Esch, H.; Waltz, S.; Wamelink, M.M.; Pouwels, P.J.; Errami, A.; van der Knaap, M.S.; Jakobs, C.; Mancini, G.M.; Salomons, G.S.BACKGROUND: Creatine transporter deficiency is a monogenic cause of X-linked intellectual disability. Since its first description in 2001 several case reports have been published but an overview of phenotype, genotype and phenotype--genotype correlation has been lacking. METHODS: We performed a retrospective study of clinical, biochemical and molecular genetic data of 101 males with X-linked creatine transporter deficiency from 85 families with a pathogenic mutation in the creatine transporter gene (SLC6A8). RESULTS AND CONCLUSIONS: Most patients developed moderate to severe intellectual disability; mild intellectual disability was rare in adult patients. Speech language development was especially delayed but almost a third of the patients were able to speak in sentences. Besides behavioural problems and seizures, mild to moderate motor dysfunction, including extrapyramidal movement abnormalities, and gastrointestinal problems were frequent clinical features. Urinary creatine to creatinine ratio proved to be a reliable screening method besides MR spectroscopy, molecular genetic testing and creatine uptake studies, allowing definition of diagnostic guidelines. A third of patients had a de novo mutation in the SLC6A8 gene. Mothers with an affected son with a de novo mutation should be counselled about a recurrence risk in further pregnancies due to the possibility of low level somatic or germline mosaicism. Missense mutations with residual activity might be associated with a milder phenotype and large deletions extending beyond the 3' end of the SLC6A8 gene with a more severe phenotype. Evaluation of the biochemical phenotype revealed unexpected high creatine levels in cerebrospinal fluid suggesting that the brain is able to synthesise creatine and that the cerebral creatine deficiency is caused by a defect in the reuptake of creatine within the neurones
- Retrospective study of the medium-chain acyl-CoA dehydrogenase deficiency in PortugalPublication . Ventura, F.V.; Leandro, P.; Luz, A.; Rivera, I.A.; Silva, M.F.; Ramos, R.; Rocha, H.; Lopes, A.; Fonseca, H.; Gaspar, A.; Diogo, L.; Martins, E.; Leão-Teles, E.; Vilarinho, L.; Tavares de Almeida, I.Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is the commonest genetic defect of mitochondrial fatty acid β-oxidation. About 60% of MCADD patients are homozygous for the c.985A>G (p.Lys329Glu) mutation in the ACADM gene (G985 allele). Herein, we present the first report on the molecular and biochemical spectrum of Portuguese MCADD population. From the 109 patients studied, 83 were diagnosed after inclusion of MCADD in the national newborn screening, 8 following the onset of symptoms and 18 through segregation studies. Gypsy ancestry was identified in 85/109 patients. The G985 allele was found in homozygosity in 102/109 patients, in compound heterozygosity in 6/109 and was absent in one patient. Segregation studies in the Gypsy families showed that 93/123 relatives were carriers of the G985 allele, suggesting its high prevalence in this ethnic group. Additionally, three new substitutions-c.218A>G (p.Tyr73Cys), c.503A>T (p.Asp168Val) and c.1205G>T (p.Gly402Val)-were identified. Despite the particularity of the MCADD population investigated, the G985 allele was found in linkage disequilibrium with H1(112) haplotype. Furthermore, two novel haplotypes, H5(212) and H6(122) were revealed.
