Browsing by Author "Cvijanovic, Ivana"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
- Global, regional, and national burden of mortality associated with cold spells during 2000–19: a three-stage modelling studyPublication . Gao, Yuan; Huang, Wenzhong; Zhao, Qi; Ryti, Niilo; Armstrong, Ben; Gasparrini, Antonio; Tong, Shilu; Pascal, Mathilde; Urban, Aleš; Zeka, Ariana; Lavigne, Eric; Madureira, Joana; Goodman, Patrick; Huber, Veronika; Forsberg, Bertil; Kyselý, Jan; Sera, Francesco; Guo, Yuming; Li, Shanshan; Gao, Yuan; Huang, Wenzhong; Zhao, Qi; Ryti, Niilo; Armstrong, Ben; Gasparrini, Antonio; Tong, Shilu; Pascal, Mathilde; Urban, Aleš; Zeka, Ariana; Lavigne, Eric; Madureira, Joana; Goodman, Patrick; Huber, Veronika; Forsberg, Bertil; Kyselý, Jan; Sera, Francesco; Bell, Michelle; Simon Hales; Honda, Yasushi; Jaakkola, Jouni J.K.; Tobias, Aurelio; Vicedo-Cabrera, Ana Maria; Abrutzky, Rosana; Coelho, Micheline de Sousa Zanotti Stagliorio; Saldiva, Paulo Hilario Nascimento; Correa, Patricia Matus; Ortega, Nicolás Valdés; Kan, Haidong; Osorio, Samuel; Roye, Dominic; Orru, Hans; Indermitte, Ene; Schneider, Alexandra; Katsouyanni, Klea; Analitis, Antonis; Carlsen, Hanne Krage; Mayvaneh, Fatemeh; Roradeh, Hematollah; Raz, Raanan; Michelozzi, Paola; de'Donato, Francesca; Hashizume, Masahiro; Kim, Yoonhee; Alahmad, Barrak; Cauchy, John Paul; Diaz, Magali Hurtado; Arellano, Eunice Elizabeth Félix; Valencia, César De la Cruz; Overcenco, Ala; Houthuijs, Danny; Ameling, Caroline; Rao, Shilpa; Carrasco, Gabriel; Seposo, Xerxes; Chua, Paul Lester Carlos; Silva, Susana das Neves Pereira da; Nunes, Baltazar; Holobaca, Iulian-Horia; Cvijanovic, Ivana; Mistry, Malcolm; Scovronick, Noah; Acquaotta, Fiorella; Kim, Ho; Lee, Whanhee; Íñiguez, Carmen; Åström, Christofer; Ragettli, Martina S.; Guo, Yue Leon; Pan, Shih-Chun; Colistro, Valentina; Zanobetti, Antonella; Schwartz, Joel; Dang, Tran Ngoc; Dung, Do Van; Guo, Yuming; Li, ShanshanBackground: Exposure to cold spells is associated with mortality. However, little is known about the global mortality burden of cold spells. Methods: A three-stage meta-analytical method was used to estimate the global mortality burden associated with cold spells by means of a time series dataset of 1960 locations across 59 countries (or regions). First, we fitted the location-specific, cold spell-related mortality associations using a quasi-Poisson regression with a distributed lag non-linear model with a lag period of up to 21 days. Second, we built a multivariate meta-regression model between location-specific associations and seven predictors. Finally, we predicted the global grid-specific cold spell-related mortality associations during 2000-19 using the fitted meta-regression model and the yearly grid-specific meta-predictors. We calculated the annual excess deaths, excess death ratio (excess deaths per 1000 deaths), and excess death rate (excess deaths per 100 000 population) due to cold spells for each grid across the world. Findings: Globally, 205 932 (95% empirical CI [eCI] 162 692-250 337) excess deaths, representing 3·81 (95% eCI 2·93-4·71) excess deaths per 1000 deaths (excess death ratio), and 3·03 (2·33-3·75) excess deaths per 100 000 population (excess death rate) were associated with cold spells per year between 2000 and 2019. The annual average global excess death ratio in 2016-19 increased by 0·12 percentage points and the excess death rate in 2016-19 increased by 0·18 percentage points, compared with those in 2000-03. The mortality burden varied geographically. The excess death ratio and rate were highest in Europe, whereas these indicators were lowest in Africa. Temperate climates had higher excess death ratio and rate associated with cold spells than other climate zones. Interpretation: Cold spells are associated with substantial mortality burden around the world with geographically varying patterns. Although the number of cold spells has on average been decreasing since year 2000, the public health threat of cold spells remains substantial. The findings indicate an urgency of taking local and regional measures to protect the public from the mortality burdens of cold spells. Funding: Australian Research Council, Australian National Health and Medical Research Council, EU's Horizon 2020 Project Exhaustion.
- Impact of population aging on future temperature-related mortality at different global warming levelsPublication . Chen, Kai; de Schrijver, Evan; Sivaraj, Sidharth; Sera, Francesco; Scovronick, Noah; Jiang, Leiwen; Roye, Dominic; Lavigne, Eric; Kyselý, Jan; Urban, Aleš; Schneider, Alexandra; Huber, Veronika; Madureira, Joana; Mistry, Malcolm N; Cvijanovic, Ivana; MCC Collaborative Research Network; Gasparrini, Antonio; Vicedo-Cabrera, Ana MOlder adults are generally amongst the most vulnerable to heat and cold. While temperature-related health impacts are projected to increase with global warming, the influence of population aging on these trends remains unclear. Here we show that at 1.5 °C, 2 °C, and 3 °C of global warming, heat-related mortality in 800 locations across 50 countries/areas will increase by 0.5%, 1.0%, and 2.5%, respectively; among which 1 in 5 to 1 in 4 heat-related deaths can be attributed to population aging. Despite a projected decrease in cold-related mortality due to progressive warming alone, population aging will mostly counteract this trend, leading to a net increase in cold-related mortality by 0.1%-0.4% at 1.5-3 °C global warming. Our findings indicate that population aging constitutes a crucial driver for future heat- and cold-related deaths, with increasing mortality burden for both heat and cold due to the aging population.
- Impacts of land-use and land-cover changes on temperature-related mortalityPublication . Orlov, Anton ; De Hertog, Steven J. ; Havermann, Felix ; Guo, Suqi ; Manola, Iris ; Lejeune, Quentin ; Schleussner, Carl-Friedrich ; Thiery, Wim ; Pongratz, Julia ; Humpenöder, Florian ; Popp, Alexander ; Aunan, Kristin ; Armstrong, Ben ; Royé, Dominic ; Cvijanovic, Ivana ; Lavigne, Eric ; Achilleos, Souzana ; Bell, Michelle ; Masselot, Pierre ; Sera, Francesco ; Vicedo-Cabrera, Ana Maria ; Gasparrini, Antonio ; Mistry, Malcolm N. ; Multi-Country Multi-City (MCC) Collaborative Research NetworkBackground: Land-use and land-cover change (LULCC) can substantially affect climate through biogeochemical and biogeophysical effects. Here, we examine the future temperature-mortality impact for two contrasting LULCC scenarios in a background climate of low greenhouse gas concentrations. The first LULCC scenario implies a globally sustainable land use and socioeconomic development (sustainability). In the second LULCC scenario, sustainability is implemented only in the Organisation for Economic Cooperation and Development countries (inequality). Methods: Using the Multi-Country Multi-City (MCC) dataset on mortality from 823 locations in 52 countries and territories, we estimated the temperature-mortality exposure-response functions (ERFs). The LULCC and noLULCC scenarios were implemented in three fully coupled Earth system models (ESMs): Community Earth System Model, Max Planck Institute Earth System Model, and European Consortium Earth System Model. Next, using temperature from the ESMs' simulations and the estimated location-specific ERFs, we assessed the temperature-related impact on mortality for the LULCC and noLULCC scenarios around the mid and end century. Results: Under sustainability, the multimodel mean changes in excess mortality range from -1.1 to +0.6 percentage points by 2050-2059 across all locations and from -1.4 to +0.5 percentage points by 2090-2099. Under inequality, these vary from -0.7 to +0.9 percentage points by 2050-2059 and from -1.3 to +2 percentage points by 2090-2099. Conclusions: While an unequal socioeconomic development and unsustainable land use could increase the burden of heat-related mortality in most regions, globally sustainable land use has the potential to reduce it in some locations. However, the total (cold and heat) impact on mortality is very location specific and strongly depends on the underlying climate change scenario due to nonlinearity in the temperature-mortality relationship.
- Regional variation in the role of humidity on city-level heat-related mortalityPublication . Guo, Qiang; Mistry, Malcolm N.; Zhou, Xudong; Zhao, Gang; Kino, Kanon; Wen, Bo; Yoshimura, Kei; Satoh, Yusuke; Cvijanovic, Ivana; Kim, Yoonhee; Ng, Chris Fook Sheng; Vicedo-Cabrera, Ana M.; Armstrong, Ben; Urban, Aleš; Katsouyanni, Klea; Masselot, Pierre; Tong, Shilu; Sera, Francesco; Huber, Veronika; Bell, Michelle L.; Kyselý, Jan; Gasparrini, Antonio; Hashizume, Masahiro; Oki, Taikan; Abrutzky, Rosana; Guo, Yuming; de Sousa Zanotti Stagliorio Coelho, Micheline; Nascimento Saldiva, Paulo Hilario; Lavigne, Eric; Ortega, Nicolás Valdés; Correa, Patricia Matus; Kan, Haidong; Osorio, Samuel; Roye, Dominic; Indermitte, Ene; Orru, Hans; Jaakkola, Jouni J K.; Ryti, Niilo; Pascal, Mathilde; Schneider, Alexandra; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Zeka, Ariana; Goodman, Patrick; de'Donato, Francesca; Michelozzi, Paola; Alahmad, Barrak; De la Cruz Valencia, César; Hurtado Diaz, Magali; Overcenco, Ala; Ameling, Caroline; Houthuijs, Danny; Rao, Shilpa; Carrasco, Gabriel; Seposo, Xerxes; Madureira, Joana; Silva, Susana; Holobaca, Iulian-Horia; Acquaotta, Fiorella; Scovronick, Noah; Kim, Ho; Lee, Whanhee; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Ragettli, Martina S.; Pan, Shih-Chun; Guo, Yue Leon; Li, Shanshan; Schneider, Rochelle; Colistro, Valentina; Zanobetti, Antonella; Schwartz, Joel; Van Dung, Do; Ngoc Dang, Tran; Honda, YasushiThe rising humid heat is regarded as a severe threat to human survivability, but the proper integration of humid heat into heat-health alerts is still being explored. Using state-of-the-art epidemiological and climatological datasets, we examined the association between multiple heat stress indicators (HSIs) and daily human mortality in 739 cities worldwide. Notable differences were observed in the long-term trends and timing of heat events detected by HSIs. Air temperature (Tair) predicts heat-related mortality well in cities with a robust negative Tair-relative humidity correlation (CT-RH). However, in cities with near-zero or weak positive CT-RH, HSIs considering humidity provide enhanced predictive power compared to Tair. Furthermore, the magnitude and timing of heat-related mortality measured by HSIs could differ largely from those associated with Tair in many cities. Our findings provide important insights into specific regions where humans are vulnerable to humid heat and can facilitate the further enhancement of heat-health alert systems.
- Seasonality of mortality under climate change: a multicountry projection studyPublication . Madaniyazi, Lina; Armstrong, Ben; Tobias, Aurelio; Mistry, Malcolm N.; Bell, Michelle L.; Urban, Aleš; Kyselý, Jan; Ryti, Niilo; Cvijanovic, Ivana; Ng, Chris Fook Sheng; Roye, Dominic; Vicedo-Cabrera, Ana Maria; Tong, Shilu; Lavigne, Eric; Íñiguez, Carmen; das Neves Pereira da Silva, Susana; Madureira, Joana; Jaakkola, Jouni J.K.; Sera, Francesco; Honda, Yasushi; Gasparrini, Antonio; Hashizume, Masahiro; Multi-Country Multi-City Collaborative Research NetworkBackground: Climate change can directly impact temperature-related excess deaths and might subsequently change the seasonal variation in mortality. In this study, we aimed to provide a systematic and comprehensive assessment of potential future changes in the seasonal variation, or seasonality, of mortality across different climate zones. Methods: In this modelling study, we collected daily time series of mean temperature and mortality (all causes or non-external causes only) via the Multi-Country Multi-City Collaborative (MCC) Research Network. These data were collected during overlapping periods, spanning from Jan 1, 1969 to Dec 31, 2020. We projected daily mortality from Jan 1, 2000 to Dec 31, 2099, under four climate change scenarios corresponding to increasing emissions (Shared Socioeconomic Pathways [SSP] scenarios SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). We compared the seasonality in projected mortality between decades by its shape, timings (the day-of-year) of minimum (trough) and maximum (peak) mortality, and sizes (peak-to-trough ratio and attributable fraction). Attributable fraction was used to measure the burden of seasonality of mortality. The results were summarised by climate zones. Findings: The MCC dataset included 126 809 537 deaths from 707 locations within 43 countries or areas. After excluding the only two polar locations (both high-altitude locations in Peru) from climatic zone assessments, we analysed 126 766 164 deaths in 705 locations aggregated in four climate zones (tropical, arid, temperate, and continental). From the 2000s to the 2090s, our projections showed an increase in mortality during the warm seasons and a decrease in mortality during the cold seasons, albeit with mortality remaining high during the cold seasons, under all four SSP scenarios in the arid, temperate, and continental zones. The magnitude of this changing pattern was more pronounced under the high-emission scenarios (SSP3-7.0 and SSP5-8.5), substantially altering the shape of seasonality of mortality and, under the highest emission scenario (SSP5-8.5), shifting the mortality peak from cold seasons to warm seasons in arid, temperate, and continental zones, and increasing the size of seasonality in all zones except the arid zone by the end of the century. In the 2090s compared with the 2000s, the change in peak-to-trough ratio (relative scale) ranged from 0·96 to 1·11, and the change in attributable fraction ranged from 0·002% to 0·06% under the SSP5-8.5 (highest emission) scenario. Interpretation: A warming climate can substantially change the seasonality of mortality in the future. Our projections suggest that health-care systems should consider preparing for a potentially increased demand during warm seasons and sustained high demand during cold seasons, particularly in regions characterised by arid, temperate, and continental climates.
