Browsing by Author "Correa, Patricia Matus"
Now showing 1 - 10 of 10
Results Per Page
Sort Options
- All-cause, cardiovascular, and respiratory mortality and wildfire-related ozone: a multicountry two-stage time series analysisPublication . Chen, Gongbo; Guo, Yuming; Yue, Xu; Xu, Rongbin; Yu,Wenhua; Ye, Tingting; Tong, Shilu; Gasparrini, Antonio; Bell,Michelle L.; Armstrong, Ben; Schwartz, Joel; Jaakkola, Jouni J.K.; Lavigne, Eric; Saldiva, Paulo Hilario Nascimento; Kan, Haidong; Royé, Dominic; Urban, Aleš; Vicedo-Cabrera, Ana Maria; Tobias, Aurelio; Forsberg, Bertil; Sera, Francesco; Lei, Yadong; Abramson, Michael J.; Li, Shanshan; Abrutzky, Rosana; Alahmad, Barrak; Ameling, Caroline; Åström, Christofer; Breitner, Susanne; Carrasco-Escobar, Gabriel; Coêlho, Micheline de Sousa Zanotti Stagliorio; Colistro, Valentina; Correa, Patricia Matus; Dang, Tran Ngoc; de'Donato, Francesca; Dung, Do Van; Entezari, Alireza; Garcia, Samuel David Osorio; Garland, Rebecca M.; Goodman, Patrick; Guo, Yue Leon; Hashizume, Masahiro; Holobaca, Iulian-Horia; Honda, Yasushi; Houthuijs, Danny; Hurtado-Díaz, Magali; Íñiguez, Carmen; Katsouyanni, Klea; Kim, Ho; Kyselý, Jan; Lee, Whanhee; Maasikmets, Marek; Madureira, Joana; Mayvaneh, Fatemeh; Nunes, Baltazar; Orru, Hans; Ortega, Nicol´s Valdés; Overcenco, Ala; Pan, Shih-Chun; Pascal, Mathilde; Ragettli, Martina S.; Rao, Shilpa; Ryti, Niilo R.I.; Samoli, Evangelia; Schneider, Alexandra; Scovronick, Noah; Seposo, Xerxes; Stafoggia, Massimo; Valencia, César De la Cruz; Zanobetti, Antonella; Zeka, Ariana; behalf of the Multi-Country Multi-City Collaborative Research NetworkBackground: Wildfire activity is an important source of tropospheric ozone (O3) pollution. However, no study to date has systematically examined the associations of wildfire-related O3 exposure with mortality globally. Methods: We did a multicountry two-stage time series analysis. From the Multi-City Multi-Country (MCC) Collaborative Research Network, data on daily all-cause, cardiovascular, and respiratory deaths were obtained from 749 locations in 43 countries or areas, representing overlapping periods from Jan 1, 2000, to Dec 31, 2016. We estimated the daily concentration of wildfire-related O3 in study locations using a chemical transport model, and then calibrated and downscaled O3 estimates to a resolution of 0·25° × 0·25° (approximately 28 km2 at the equator). Using a random-effects meta-analysis, we examined the associations of short-term wildfire-related O3 exposure (lag period of 0-2 days) with daily mortality, first at the location level and then pooled at the country, regional, and global levels. Annual excess mortality fraction in each location attributable to wildfire-related O3 was calculated with pooled effect estimates and used to obtain excess mortality fractions at country, regional, and global levels. Findings: Between 2000 and 2016, the highest maximum daily wildfire-related O3 concentrations (≥30 μg/m3) were observed in locations in South America, central America, and southeastern Asia, and the country of South Africa. Across all locations, an increase of 1 μg/m3 in the mean daily concentration of wildfire-related O3 during lag 0-2 days was associated with increases of 0·55% (95% CI 0·29 to 0·80) in daily all-cause mortality, 0·44% (-0·10 to 0·99) in daily cardiovascular mortality, and 0·82% (0·18 to 1·47) in daily respiratory mortality. The associations of daily mortality rates with wildfire-related O3 exposure showed substantial geographical heterogeneity at the country and regional levels. Across all locations, estimated annual excess mortality fractions of 0·58% (95% CI 0·31 to 0·85; 31 606 deaths [95% CI 17 038 to 46 027]) for all-cause mortality, 0·41% (-0·10 to 0·91; 5249 [-1244 to 11 620]) for cardiovascular mortality, and 0·86% (0·18 to 1·51; 4657 [999 to 8206]) for respiratory mortality were attributable to short-term exposure to wildfire-related O3. Interpretation: In this study, we observed an increase in all-cause and respiratory mortality associated with short-term wildfire-related O3 exposure. Effective risk and smoke management strategies should be implemented to protect the public from the impacts of wildfires.
- Comparison of weather station and climate reanalysis data for modelling temperature-related mortalityPublication . Mistry, Malcolm N.; Schneider, Rochelle; Masselot, Pierre; Royé, Dominic; Armstrong, Ben; Kyselý, Jan; Orru, Hans; Sera, Francesco; Tong, Shilu; Lavigne, Éric; Urban, Aleš; Madureira, Joana; García-León, David; Ibarreta, Dolores; Ciscar, Juan-Carlos; Feyen, Luc; de Schrijver, Evan; de Sousa Zanotti Stagliorio Coelho, Micheline; Pascal, Mathilde; Tobias, Aurelio; Alahmad, Barrak; Abrutzky, Rosana; Saldiva, Paulo Hilario Nascimento; Correa, Patricia Matus; Orteg, Nicolás Valdés; Kan, Haidong; Osorio, Samuel; Indermitte, Ene; Jaakkola, Jouni J.K.; Ryti, Niilo; Schneider, Alexandra; Huber, Veronika; Katsouyanni, Klea; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Michelozzi, Paola; de’Donato, Francesca; Hashizume, Masahiro; Kim, Yoonhee; Diaz, Magali Hurtado; De la Cruz Valencia, César; Overcenco, Ala; Houthuijs, Danny; Ameling, Caroline; Rao, Shilpa; Seposo, Xerxes; Nunes, Baltazar; Holobaca, Iulian-Horia; Kim, Ho; Lee, Whanhee; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Guo, Yue-Liang Leon; Chen, Bing-Yu; Colistro, Valentina; Zanobetti, Antonella; Schwartz, Joel; Dang, Tran Ngoc; Van Dung, Do; Guo, Yuming; Vicedo-Cabrera, Ana M.; Gasparrini, AntonioEpidemiological analyses of health risks associated with non-optimal temperature are traditionally based on ground observations from weather stations that offer limited spatial and temporal coverage. Climate reanalysis represents an alternative option that provide complete spatio-temporal exposure coverage, and yet are to be systematically explored for their suitability in assessing temperature-related health risks at a global scale. Here we provide the first comprehensive analysis over multiple regions to assess the suitability of the most recent generation of reanalysis datasets for health impact assessments and evaluate their comparative performance against traditional station-based data. Our findings show that reanalysis temperature from the last ERA5 products generally compare well to station observations, with similar non-optimal temperature-related risk estimates. However, the analysis offers some indication of lower performance in tropical regions, with a likely underestimation of heat-related excess mortality. Reanalysis data represent a valid alternative source of exposure variables in epidemiological analyses of temperature-related risk.
- Geographical Variations of the Minimum Mortality Temperature at a Global ScalePublication . Tobías, Aurelio; Hashizume, Masahiro; Honda, Yasushi; Sera, Francesco; Ng, Chris Fook Sheng; Kim, Yoonhee; Roye, Dominic; Chung, Yeonseung; Dang, Tran Ngoc; Kim, Ho; Lee, Whanhee; Íñiguez, Carmen; Vicedo-Cabrera, Ana; Abrutzky, Rosana; Guo, Yuming; Tong, Shilu; Coelho, Micheline de Sousa Zanotti Stagliorio; Saldiva, Paulo Hilario Nascimento; Lavigne, Eric; Correa, Patricia Matus; Ortega, Nicolás Valdés; Kan, Haidong; Osorio, Samuel; Kyselý, Jan; Urban, Aleš; Orru, Hans; Indermitte, Ene; Jaakkola, Jouni J.K.; Ryti, Niilo R.I.; Pascal, Mathilde; Huber, Veronika; Schneider, Alexandra; Katsouyanni, Klea; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Goodman, Patrick; Zeka, Ariana; Michelozzi, Paola; de’Donato, Francesca; Alahmad, Barrak; Diaz, Magali Hurtado; De la Cruz Valencia, César; Overcenco, Ala; Houthuijs, Danny; Ameling, Caroline; Rao, Shilpa; Di Ruscio, Francesco; Carrasco, Gabriel; Seposo, Xerxes; Nunes, Baltazar; Madureira, Joana; Holobaca, Iulian-Horia; Scovronick, Noah; Acquaotta, Fiorella; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Guo, Yue-Liang Leon; Chen, Bing-Yu; Li, Shanshan; Colistro, Valentina; Zanobetti, Antonella; Schwartz, Joel; Dung, Do Van; Armstrong, Ben; Gasparrini, AntonioBackground: Minimum mortality temperature (MMT) is an important indicator to assess the temperature-mortality association, indicating long-term adaptation to local climate. Limited evidence about the geographical variability of the MMT is available at a global scale. Methods: We collected data from 658 communities in 43 countries under different climates. We estimated temperature-mortality associations to derive the MMT for each community using Poisson regression with distributed lag nonlinear models. We investigated the variation in MMT by climatic zone using a mixed-effects meta-analysis and explored the association with climatic and socioeconomic indicators. Results: The geographical distribution of MMTs varied considerably by country between 14.2 and 31.1 °C decreasing by latitude. For climatic zones, the MMTs increased from alpine (13.0 °C) to continental (19.3 °C), temperate (21.7 °C), arid (24.5 °C), and tropical (26.5 °C). The MMT percentiles (MMTPs) corresponding to the MMTs decreased from temperate (79.5th) to continental (75.4th), arid (68.0th), tropical (58.5th), and alpine (41.4th). The MMTs indreased by 0.8 °C for a 1 °C rise in a community's annual mean temperature, and by 1 °C for a 1 °C rise in its SD. While the MMTP decreased by 0.3 centile points for a 1 °C rise in a community's annual mean temperature and by 1.3 for a 1 °C rise in its SD. Conclusions: The geographical distribution of the MMTs and MMTPs is driven mainly by the mean annual temperature, which seems to be a valuable indicator of overall adaptation across populations. Our results suggest that populations have adapted to the average temperature, although there is still more room for adaptation.
- Global, regional, and national burden of mortality associated with cold spells during 2000–19: a three-stage modelling studyPublication . Gao, Yuan; Huang, Wenzhong; Zhao, Qi; Ryti, Niilo; Armstrong, Ben; Gasparrini, Antonio; Tong, Shilu; Pascal, Mathilde; Urban, Aleš; Zeka, Ariana; Lavigne, Eric; Madureira, Joana; Goodman, Patrick; Huber, Veronika; Forsberg, Bertil; Kyselý, Jan; Sera, Francesco; Guo, Yuming; Li, Shanshan; Gao, Yuan; Huang, Wenzhong; Zhao, Qi; Ryti, Niilo; Armstrong, Ben; Gasparrini, Antonio; Tong, Shilu; Pascal, Mathilde; Urban, Aleš; Zeka, Ariana; Lavigne, Eric; Madureira, Joana; Goodman, Patrick; Huber, Veronika; Forsberg, Bertil; Kyselý, Jan; Sera, Francesco; Bell, Michelle; Simon Hales; Honda, Yasushi; Jaakkola, Jouni J.K.; Tobias, Aurelio; Vicedo-Cabrera, Ana Maria; Abrutzky, Rosana; Coelho, Micheline de Sousa Zanotti Stagliorio; Saldiva, Paulo Hilario Nascimento; Correa, Patricia Matus; Ortega, Nicolás Valdés; Kan, Haidong; Osorio, Samuel; Roye, Dominic; Orru, Hans; Indermitte, Ene; Schneider, Alexandra; Katsouyanni, Klea; Analitis, Antonis; Carlsen, Hanne Krage; Mayvaneh, Fatemeh; Roradeh, Hematollah; Raz, Raanan; Michelozzi, Paola; de'Donato, Francesca; Hashizume, Masahiro; Kim, Yoonhee; Alahmad, Barrak; Cauchy, John Paul; Diaz, Magali Hurtado; Arellano, Eunice Elizabeth Félix; Valencia, César De la Cruz; Overcenco, Ala; Houthuijs, Danny; Ameling, Caroline; Rao, Shilpa; Carrasco, Gabriel; Seposo, Xerxes; Chua, Paul Lester Carlos; Silva, Susana das Neves Pereira da; Nunes, Baltazar; Holobaca, Iulian-Horia; Cvijanovic, Ivana; Mistry, Malcolm; Scovronick, Noah; Acquaotta, Fiorella; Kim, Ho; Lee, Whanhee; Íñiguez, Carmen; Åström, Christofer; Ragettli, Martina S.; Guo, Yue Leon; Pan, Shih-Chun; Colistro, Valentina; Zanobetti, Antonella; Schwartz, Joel; Dang, Tran Ngoc; Dung, Do Van; Guo, Yuming; Li, ShanshanBackground: Exposure to cold spells is associated with mortality. However, little is known about the global mortality burden of cold spells. Methods: A three-stage meta-analytical method was used to estimate the global mortality burden associated with cold spells by means of a time series dataset of 1960 locations across 59 countries (or regions). First, we fitted the location-specific, cold spell-related mortality associations using a quasi-Poisson regression with a distributed lag non-linear model with a lag period of up to 21 days. Second, we built a multivariate meta-regression model between location-specific associations and seven predictors. Finally, we predicted the global grid-specific cold spell-related mortality associations during 2000-19 using the fitted meta-regression model and the yearly grid-specific meta-predictors. We calculated the annual excess deaths, excess death ratio (excess deaths per 1000 deaths), and excess death rate (excess deaths per 100 000 population) due to cold spells for each grid across the world. Findings: Globally, 205 932 (95% empirical CI [eCI] 162 692-250 337) excess deaths, representing 3·81 (95% eCI 2·93-4·71) excess deaths per 1000 deaths (excess death ratio), and 3·03 (2·33-3·75) excess deaths per 100 000 population (excess death rate) were associated with cold spells per year between 2000 and 2019. The annual average global excess death ratio in 2016-19 increased by 0·12 percentage points and the excess death rate in 2016-19 increased by 0·18 percentage points, compared with those in 2000-03. The mortality burden varied geographically. The excess death ratio and rate were highest in Europe, whereas these indicators were lowest in Africa. Temperate climates had higher excess death ratio and rate associated with cold spells than other climate zones. Interpretation: Cold spells are associated with substantial mortality burden around the world with geographically varying patterns. Although the number of cold spells has on average been decreasing since year 2000, the public health threat of cold spells remains substantial. The findings indicate an urgency of taking local and regional measures to protect the public from the mortality burdens of cold spells. Funding: Australian Research Council, Australian National Health and Medical Research Council, EU's Horizon 2020 Project Exhaustion.
- Interactive effects of ambient fine particulate matter and ozone on daily mortality in 372 cities: two stage time series analysisPublication . Liu, Cong; Chen, Renjie; Sera, Francesco; Vicedo-Cabrera, Ana Maria; Guo, Yuming; Tong, Shilu; Lavigne, Eric; Correa, Patricia Matus; Ortega, Nicolás Valdés; Achilleos, Souzana; Roye, Dominic; Jaakkola, Jouni J.K.; Ryti, Niilo; Pascal, Mathilde; Schneider, Alexandra; Breitner, Susanne; Entezari, Alireza; Mayvaneh, Fatemeh; Raz, Raanan; Honda, Yasushi; Hashizume, Masahiro; Ng, Chris Fook Sheng; Gaio, Vânia; Madureira, Joana; Holobaca, Iulian-Horia; Tobias, Aurelio; Íñiguez, Carmen; Guo, Yue Leon; Pan, Shih-Chun; Masselot, Pierre; Bell, Michelle L.; Zanobetti, Antonella; Schwartz, Joel; Gasparrini, Antonio; Kan, HaidongObjective: To investigate potential interactive effects of fine particulate matter (PM2.5) and ozone (O3) on daily mortality at global level. Design: Two stage time series analysis. Setting: 372 cities across 19 countries and regions. Population: Daily counts of deaths from all causes, cardiovascular disease, and respiratory disease. Main outcome measure: Daily mortality data during 1994-2020. Stratified analyses by co-pollutant exposures and synergy index (>1 denotes the combined effect of pollutants is greater than individual effects) were applied to explore the interaction between PM2.5 and O3 in association with mortality. Results: During the study period across the 372 cities, 19.3 million deaths were attributable to all causes, 5.3 million to cardiovascular disease, and 1.9 million to respiratory disease. The risk of total mortality for a 10 μg/m3 increment in PM2.5 (lag 0-1 days) ranged from 0.47% (95% confidence interval 0.26% to 0.67%) to 1.25% (1.02% to 1.48%) from the lowest to highest fourths of O3 concentration; and for a 10 μg/m3 increase in O3 ranged from 0.04% (-0.09% to 0.16%) to 0.29% (0.18% to 0.39%) from the lowest to highest fourths of PM2.5 concentration, with significant differences between strata (P for interaction <0.001). A significant synergistic interaction was also identified between PM2.5 and O3 for total mortality, with a synergy index of 1.93 (95% confidence interval 1.47 to 3.34). Subgroup analyses showed that interactions between PM2.5 and O3 on all three mortality endpoints were more prominent in high latitude regions and during cold seasons. Conclusion: The findings of this study suggest a synergistic effect of PM2.5 and O3 on total, cardiovascular, and respiratory mortality, indicating the benefit of coordinated control strategies for both pollutants.
- Predicted temperature-increase-induced global health burden and its regional variabilityPublication . Lee, Jae Young; Kim, Ho; Gasparrini, Antonio; Armstrong, Ben; Bell, Michelle L.; Sera, Francesco; Lavigne, Eric; Abrutzky, Rosana; Tong, Shilu; Coelho, Micheline de Sousa Zanotti Stagliorio; Saldiva, Paulo Hilario Nascimento; Correa, Patricia Matus; Ortega, Nicolas Valdes; Kan, Haidong; Garcia, Samuel Osorio; Kyselý, Jan; Urban, Aleš; Orru, Hans; Indermitte, Ene; Jaakkola, Jouni J.K.; Ryti, Niilo R.I.; Pascal, Mathilde; Goodman, Patrick G.; Zeka, Ariana; Michelozzi, Paola; Scortichini, Matteo; Hashizume, Masahiro; Honda, Yasushi; Hurtado, Magali; Cruz, Julio; Seposo, Xerxes; Nunes, Baltazar; Teixeira, João Paulo; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Vicedo-Cabrera, Ana Maria; Ragettli, Martina S.; Guo, Yue-Liang Leon; Chen, Bing-Yu; Zanobetti, Antonella; Schwartz, Joel; Dang, Tran Ngoc; Do Van, Dung; Mayvaneh, Fetemeh; Overcenco, Ala; Li, Shanshan; Guo, YumingAn increase in the global health burden of temperature was projected for 459 locations in 28 countries worldwide under four representative concentration pathway scenarios until 2099. We determined that the amount of temperature increase for each 100 ppm increase in global CO2 concentrations is nearly constant, regardless of climate scenarios. The overall average temperature increase during 2010-2099 is largest in Canada (1.16 °C/100 ppm) and Finland (1.14 °C/100 ppm), while it is smallest in Ireland (0.62 °C/100 ppm) and Argentina (0.63 °C/100 ppm). In addition, for each 1 °C temperature increase, the amount of excess mortality is increased largely in tropical countries such as Vietnam (10.34%p/°C) and the Philippines (8.18%p/°C), while it is decreased in Ireland (-0.92%p/°C) and Australia (-0.32%p/°C). To understand the regional variability in temperature increase and mortality, we performed a regression-based modeling. We observed that the projected temperature increase is highly correlated with daily temperature range at the location and vulnerability to temperature increase is affected by health expenditure, and proportions of obese and elderly population.
- Regional variation in the role of humidity on city-level heat-related mortalityPublication . Guo, Qiang; Mistry, Malcolm N.; Zhou, Xudong; Zhao, Gang; Kino, Kanon; Wen, Bo; Yoshimura, Kei; Satoh, Yusuke; Cvijanovic, Ivana; Kim, Yoonhee; Ng, Chris Fook Sheng; Vicedo-Cabrera, Ana M.; Armstrong, Ben; Urban, Aleš; Katsouyanni, Klea; Masselot, Pierre; Tong, Shilu; Sera, Francesco; Huber, Veronika; Bell, Michelle L.; Kyselý, Jan; Gasparrini, Antonio; Hashizume, Masahiro; Oki, Taikan; Abrutzky, Rosana; Guo, Yuming; de Sousa Zanotti Stagliorio Coelho, Micheline; Nascimento Saldiva, Paulo Hilario; Lavigne, Eric; Ortega, Nicolás Valdés; Correa, Patricia Matus; Kan, Haidong; Osorio, Samuel; Roye, Dominic; Indermitte, Ene; Orru, Hans; Jaakkola, Jouni J K.; Ryti, Niilo; Pascal, Mathilde; Schneider, Alexandra; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Zeka, Ariana; Goodman, Patrick; de'Donato, Francesca; Michelozzi, Paola; Alahmad, Barrak; De la Cruz Valencia, César; Hurtado Diaz, Magali; Overcenco, Ala; Ameling, Caroline; Houthuijs, Danny; Rao, Shilpa; Carrasco, Gabriel; Seposo, Xerxes; Madureira, Joana; Silva, Susana; Holobaca, Iulian-Horia; Acquaotta, Fiorella; Scovronick, Noah; Kim, Ho; Lee, Whanhee; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Ragettli, Martina S.; Pan, Shih-Chun; Guo, Yue Leon; Li, Shanshan; Schneider, Rochelle; Colistro, Valentina; Zanobetti, Antonella; Schwartz, Joel; Van Dung, Do; Ngoc Dang, Tran; Honda, YasushiThe rising humid heat is regarded as a severe threat to human survivability, but the proper integration of humid heat into heat-health alerts is still being explored. Using state-of-the-art epidemiological and climatological datasets, we examined the association between multiple heat stress indicators (HSIs) and daily human mortality in 739 cities worldwide. Notable differences were observed in the long-term trends and timing of heat events detected by HSIs. Air temperature (Tair) predicts heat-related mortality well in cities with a robust negative Tair-relative humidity correlation (CT-RH). However, in cities with near-zero or weak positive CT-RH, HSIs considering humidity provide enhanced predictive power compared to Tair. Furthermore, the magnitude and timing of heat-related mortality measured by HSIs could differ largely from those associated with Tair in many cities. Our findings provide important insights into specific regions where humans are vulnerable to humid heat and can facilitate the further enhancement of heat-health alert systems.
- Short term associations of ambient nitrogen dioxide with daily total, cardiovascular, and respiratory mortality: multilocation analysis in 398 citiesPublication . Meng, Xia; Liu, Cong; Chen, Renjie; Sera, Francesco; Vicedo-Cabrera, Ana Maria; Milojevic, Ai; Guo, Yuming; Tong, Shilu; Coelho, Micheline de Sousa Zanotti Staglior; Saldiva, Paulo Hilario Nascimento; Lavigne, Eric; Correa, Patricia Matus; Ortega, Nicolas Valdes; Osorio Garcia, Samuel; Kyselý, Jan; Urban, Aleš; Orru, Hans; Maasikmets, Marek; Jaakkola, Jouni J.K.; Ryti, Niilo; Huber, Veronika; Schneider, Alexandra; Katsouyanni, Klea; Analitis, Antonis; Hashizume, Masahiro; Honda, Yasushi; Ng, Chris Fook Sheng; Nunes, Baltazar; Teixeira, João Paulo; Holobaca, Iulian Horia; Fratianni, Simona; Kim, Ho; Tobias, Aurelio; Íñiguez, Carmen; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Guo, Yue-Liang Leon; Pan, Shih-Chun; Li, Shanshan; Bell, Michelle L.; Zanobetti, Antonella; Schwartz, Joel; Wu, Tangchun; Gasparrini, Antonio; Kan, HaidongObjective: To evaluate the short term associations between nitrogen dioxide (NO2) and total, cardiovascular, and respiratory mortality across multiple countries/regions worldwide, using a uniform analytical protocol. Design: Two stage, time series approach, with overdispersed generalised linear models and multilevel meta-analysis. Setting: 398 cities in 22 low to high income countries/regions. Main outcome measures: Daily deaths from total (62.8 million), cardiovascular (19.7 million), and respiratory (5.5 million) causes between 1973 and 2018. Results: On average, a 10 μg/m3 increase in NO2 concentration on lag 1 day (previous day) was associated with 0.46% (95% confidence interval 0.36% to 0.57%), 0.37% (0.22% to 0.51%), and 0.47% (0.21% to 0.72%) increases in total, cardiovascular, and respiratory mortality, respectively. These associations remained robust after adjusting for co-pollutants (particulate matter with aerodynamic diameter ≤10 μm or ≤2.5 μm (PM10 and PM2.5, respectively), ozone, sulfur dioxide, and carbon monoxide). The pooled concentration-response curves for all three causes were almost linear without discernible thresholds. The proportion of deaths attributable to NO2 concentration above the counterfactual zero level was 1.23% (95% confidence interval 0.96% to 1.51%) across the 398 cities. Conclusions: This multilocation study provides key evidence on the independent and linear associations between short term exposure to NO2 and increased risk of total, cardiovascular, and respiratory mortality, suggesting that health benefits would be achieved by tightening the guidelines and regulatory limits of NO2.
- Temperature frequency and mortality: Assessing adaptation to local temperaturePublication . Wu, Yao; Wen, Bo; Gasparrini, Antonio; Armstrong, Ben; Sera, Francesco; Lavigne, Eric; Li, Shanshan; Guo, Yuming; Overcenco, Ala; Urban, Aleš; Schneider, Alexandra; Entezari, Alireza; Vicedo-Cabrera, Ana Maria; Zanobetti, Antonella; Analitis, Antonis; Zeka, Ariana; Tobias, Aurelio; Nunes, Baltazar; Alahmad, Barrak; Forsberg, Bertil; Íñiguez, Carmen; Ameling, Caroline; Cruz Valencia, César De la; Houthuijs, Danny; Dung, Do Van; Roye, Dominic; Indermitte, Ene; Mayvaneh, Fatemeh; Acquaotta, Fiorella; de'Donato, Francesca; Carrasco-Escobar, Gabriel; Kan, Haidong; Carlsen, Hanne Krage; Orru, Hans; Kim, Ho; Holobaca, Iulian-Horia; Kyselý, Jan; Madureira, Joana; Schwartz, Joel; Jaakkola, Jouni J.K.; Katsouyanni, Klea; Diaz, Magali Hurtado; Ragettli, Martina S.; Hashizume, Masahiro; Pascal, Mathilde; Coelho, Micheline de Sousa Zanotti Stagliorio; Ortega, Nicolás Valdés; Ryti, Niilo; Scovronick, Noah; Michelozzi, Paola; Correa, Patricia Matus; Goodman, Patrick; Saldiva, Paulo Hilario Nascimento; Raz, Raanan; Abrutzky, Rosana; Osorio, Samuel; Pan, Shih-Chun; Rao, Shilpa; Tong, Shilu; Achilleos, Souzana; Dang, Tran Ngoc; Colistro, Valentina; Huber, Veronika; Lee, Whanhee; Seposo, Xerxes; Honda, Yasushi; Kim, Yoonhee; Guo, Yue Leon; Li, Shanshan; Guo, YumingAssessing the association between temperature frequency and mortality can provide insights into human adaptation to local ambient temperatures. We collected daily time-series data on mortality and temperature from 757 locations in 47 countries/regions during 1979–2020. We used a two-stage time series design to assess the association between temperature frequency and all-cause mortality. The results were pooled at the national, regional, and global levels. We observed a consistent decrease in the risk of mortality as the normalized frequency of temperature increases across the globe. The average increase in mortality risk comparing the 10th to 100th percentile of normalized frequency was 13.03% (95% CI: 12.17–13.91), with substantial regional differences (from 4.56% in Australia and New Zealand to 33.06% in South Europe). The highest increase in mortality was observed for high-income countries (13.58%, 95% CI: 12.56–14.61), followed by lower-middle-income countries (12.34%, 95% CI: 9.27–15.51). This study observed a declining risk of mortality associated with higher temperature frequency. Our findings suggest that populations can adapt to their local climate with frequent exposure, with the adapting ability varying geographically due to differences in climatic and socioeconomic characteristics.
- Temporal change in minimum mortality temperature under changing climate: A multicountry multicommunity observational study spanning 1986-2015Publication . Yang, Daewon; Hashizume, Masahiro; Tobías, Aurelio; Honda, Yasushi; Roye, Dominic; Oh, Jaemin; Dang, Tran Ngoc; Kim, Yoonhee; Abrutzky, Rosana; Guo, Yuming; Tong, Shilu; Coelho, Micheline de Sousa Zanotti Stagliorio; Saldiva, Paulo Hilario Nascimento; Lavigne, Eric; Correa, Patricia Matus; Ortega, Nicolás Valdés; Osorio, Samuel; Kyselý, Jan; Urban, Aleš; Orru, Hans; Indermitte, Ene; Jaakkola, Jouni; Ryti, Niilo; Pascal, Mathilde; Huber, Veronika; Schneider, Alexandra; Katsouyanni, Klea; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Goodman, Patrick; Zeka, Ariana; Michelozzi, Paola; de'Donato, Francesca; Alahmad, Barrak; Diaz, Magali Hurtado; la Cruz Valencia, César De; Overcenco, Ala; Houthuijs, Danny; Ameling, Caroline; Rao, Shilpa; Nunes, Baltazar; Madureira, Joana; Holo-Bâc, Iulian Horia; Scovronick, Noah; Acquaotta, Fiorella; Kim, Ho; Lee, Whanhee; Íñiguez, Carmen; Forsberg, Bertil; Vicedo-Cabrera, Ana Maria; Ragettli, Martina S; Guo, Yue-Liang Leon; Pan, Shih Chun; Li, Shanshan; Sera, Francesco; Zanobetti, Antonella; Schwartz, Joel; Armstrong, Ben; Gasparrini, Antonio; Chung, YeonseungBackground: The minimum mortality temperature (MMT) or MMT percentile (MMTP) is an indicator of population susceptibility to nonoptimum temperatures. MMT and MMTP change over time; however, the changing directions show region-wide heterogeneity. We examined the heterogeneity of temporal changes in MMT and MMTP across multiple communities and in multiple countries. Methods: Daily time-series data for mortality and ambient mean temperature for 699 communities in 34 countries spanning 1986-2015 were analyzed using a two-stage meta-analysis. First, a quasi-Poisson regression was employed to estimate MMT and MMTP for each community during the designated subperiods. Second, we pooled the community-specific temporally varying estimates using mixed-effects meta-regressions to examine temporal changes in MMT and MMTP in the entire study population, as well as by climate zone, geographical region, and country. Results: Temporal increases in MMT and MMTP from 19.5 °C (17.9, 21.1) to 20.3 °C (18.5, 22.0) and from the 74.5 (68.3, 80.6) to 75.0 (71.0, 78.9) percentiles in the entire population were found, respectively. Temporal change was significantly heterogeneous across geographical regions (P < 0.001). Temporal increases in MMT were observed in East Asia (linear slope [LS] = 0.91, P = 0.02) and South-East Asia (LS = 0.62, P = 0.05), whereas a temporal decrease in MMT was observed in South Europe (LS = -0.46, P = 0.05). MMTP decreased temporally in North Europe (LS = -3.45, P = 0.02) and South Europe (LS = -2.86, P = 0.05). Conclusions: The temporal change in MMT or MMTP was largely heterogeneous. Population susceptibility in terms of optimum temperature may have changed under a warming climate, albeit with large region-dependent variations.
