Browsing by Author "Chung, Yeonseung"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Geographical Variations of the Minimum Mortality Temperature at a Global ScalePublication . Tobías, Aurelio; Hashizume, Masahiro; Honda, Yasushi; Sera, Francesco; Ng, Chris Fook Sheng; Kim, Yoonhee; Roye, Dominic; Chung, Yeonseung; Dang, Tran Ngoc; Kim, Ho; Lee, Whanhee; Íñiguez, Carmen; Vicedo-Cabrera, Ana; Abrutzky, Rosana; Guo, Yuming; Tong, Shilu; Coelho, Micheline de Sousa Zanotti Stagliorio; Saldiva, Paulo Hilario Nascimento; Lavigne, Eric; Correa, Patricia Matus; Ortega, Nicolás Valdés; Kan, Haidong; Osorio, Samuel; Kyselý, Jan; Urban, Aleš; Orru, Hans; Indermitte, Ene; Jaakkola, Jouni J.K.; Ryti, Niilo R.I.; Pascal, Mathilde; Huber, Veronika; Schneider, Alexandra; Katsouyanni, Klea; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Goodman, Patrick; Zeka, Ariana; Michelozzi, Paola; de’Donato, Francesca; Alahmad, Barrak; Diaz, Magali Hurtado; De la Cruz Valencia, César; Overcenco, Ala; Houthuijs, Danny; Ameling, Caroline; Rao, Shilpa; Di Ruscio, Francesco; Carrasco, Gabriel; Seposo, Xerxes; Nunes, Baltazar; Madureira, Joana; Holobaca, Iulian-Horia; Scovronick, Noah; Acquaotta, Fiorella; Forsberg, Bertil; Åström, Christofer; Ragettli, Martina S.; Guo, Yue-Liang Leon; Chen, Bing-Yu; Li, Shanshan; Colistro, Valentina; Zanobetti, Antonella; Schwartz, Joel; Dung, Do Van; Armstrong, Ben; Gasparrini, AntonioBackground: Minimum mortality temperature (MMT) is an important indicator to assess the temperature-mortality association, indicating long-term adaptation to local climate. Limited evidence about the geographical variability of the MMT is available at a global scale. Methods: We collected data from 658 communities in 43 countries under different climates. We estimated temperature-mortality associations to derive the MMT for each community using Poisson regression with distributed lag nonlinear models. We investigated the variation in MMT by climatic zone using a mixed-effects meta-analysis and explored the association with climatic and socioeconomic indicators. Results: The geographical distribution of MMTs varied considerably by country between 14.2 and 31.1 °C decreasing by latitude. For climatic zones, the MMTs increased from alpine (13.0 °C) to continental (19.3 °C), temperate (21.7 °C), arid (24.5 °C), and tropical (26.5 °C). The MMT percentiles (MMTPs) corresponding to the MMTs decreased from temperate (79.5th) to continental (75.4th), arid (68.0th), tropical (58.5th), and alpine (41.4th). The MMTs indreased by 0.8 °C for a 1 °C rise in a community's annual mean temperature, and by 1 °C for a 1 °C rise in its SD. While the MMTP decreased by 0.3 centile points for a 1 °C rise in a community's annual mean temperature and by 1.3 for a 1 °C rise in its SD. Conclusions: The geographical distribution of the MMTs and MMTPs is driven mainly by the mean annual temperature, which seems to be a valuable indicator of overall adaptation across populations. Our results suggest that populations have adapted to the average temperature, although there is still more room for adaptation.
- Temporal change in minimum mortality temperature under changing climate: A multicountry multicommunity observational study spanning 1986-2015Publication . Yang, Daewon; Hashizume, Masahiro; Tobías, Aurelio; Honda, Yasushi; Roye, Dominic; Oh, Jaemin; Dang, Tran Ngoc; Kim, Yoonhee; Abrutzky, Rosana; Guo, Yuming; Tong, Shilu; Coelho, Micheline de Sousa Zanotti Stagliorio; Saldiva, Paulo Hilario Nascimento; Lavigne, Eric; Correa, Patricia Matus; Ortega, Nicolás Valdés; Osorio, Samuel; Kyselý, Jan; Urban, Aleš; Orru, Hans; Indermitte, Ene; Jaakkola, Jouni; Ryti, Niilo; Pascal, Mathilde; Huber, Veronika; Schneider, Alexandra; Katsouyanni, Klea; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Goodman, Patrick; Zeka, Ariana; Michelozzi, Paola; de'Donato, Francesca; Alahmad, Barrak; Diaz, Magali Hurtado; la Cruz Valencia, César De; Overcenco, Ala; Houthuijs, Danny; Ameling, Caroline; Rao, Shilpa; Nunes, Baltazar; Madureira, Joana; Holo-Bâc, Iulian Horia; Scovronick, Noah; Acquaotta, Fiorella; Kim, Ho; Lee, Whanhee; Íñiguez, Carmen; Forsberg, Bertil; Vicedo-Cabrera, Ana Maria; Ragettli, Martina S; Guo, Yue-Liang Leon; Pan, Shih Chun; Li, Shanshan; Sera, Francesco; Zanobetti, Antonella; Schwartz, Joel; Armstrong, Ben; Gasparrini, Antonio; Chung, YeonseungBackground: The minimum mortality temperature (MMT) or MMT percentile (MMTP) is an indicator of population susceptibility to nonoptimum temperatures. MMT and MMTP change over time; however, the changing directions show region-wide heterogeneity. We examined the heterogeneity of temporal changes in MMT and MMTP across multiple communities and in multiple countries. Methods: Daily time-series data for mortality and ambient mean temperature for 699 communities in 34 countries spanning 1986-2015 were analyzed using a two-stage meta-analysis. First, a quasi-Poisson regression was employed to estimate MMT and MMTP for each community during the designated subperiods. Second, we pooled the community-specific temporally varying estimates using mixed-effects meta-regressions to examine temporal changes in MMT and MMTP in the entire study population, as well as by climate zone, geographical region, and country. Results: Temporal increases in MMT and MMTP from 19.5 °C (17.9, 21.1) to 20.3 °C (18.5, 22.0) and from the 74.5 (68.3, 80.6) to 75.0 (71.0, 78.9) percentiles in the entire population were found, respectively. Temporal change was significantly heterogeneous across geographical regions (P < 0.001). Temporal increases in MMT were observed in East Asia (linear slope [LS] = 0.91, P = 0.02) and South-East Asia (LS = 0.62, P = 0.05), whereas a temporal decrease in MMT was observed in South Europe (LS = -0.46, P = 0.05). MMTP decreased temporally in North Europe (LS = -3.45, P = 0.02) and South Europe (LS = -2.86, P = 0.05). Conclusions: The temporal change in MMT or MMTP was largely heterogeneous. Population susceptibility in terms of optimum temperature may have changed under a warming climate, albeit with large region-dependent variations.
