Browsing by Author "Brindley, Paul J."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Combination anthelmintic/antioxidant activity against Schistosoma MansoniPublication . Gouveia, Maria João; Brindley, Paul J.; Rinaldi, Gabriel; Gärtner, Fátima; da Costa, José Manuel Correia; Vale, NunoSchistosomiasis is a major neglected tropical disease. Treatment for schistosomiasis with praziquantel (PZQ), which is effective against the parasite, by itself is not capable to counteract infection-associated disease lesions including hepatic fibrosis. There is a pressing need for novel therapies. Due to their biological properties, antioxidant biomolecules might be useful in treating and reverting associated pathological sequelae. Here, we investigated a novel therapy approach based on a combination of anthelmintic drugs with antioxidant biomolecules. We used a host-parasite model involving Bioamphalaria glabrata and newly transformed schistosomula (NTS) of Schistosoma mansoni. For in vitro drug screening assays, was selected several antioxidants and evaluated not only antischistosomal activity but also ability to enhance activity of the anthelmintic drugs praziquantel (PZQ) and artesunate (AS). The morphological alterations induced by compounds alone/combined were assessed on daily basis using an inverted and automated microscope to quantify NTS viability by a fluorometric-based method. The findings indicated that not only do some antioxidants improve antischistosomal activity of the two anthelmintics, but they exhibit activity per se, leading to high mortality of NTS post-exposure. The combination index (CI) of PZQ + Mel (CI = 0.80), PZQ + Resv (CI = 0.74), AS + Resv (CI = 0.34), AS + NAC (CI = 0.89), VDT + Flav (CI = 1.03) and VDT + Resv (CI = 1.06) reveal that they display moderate to strong synergism. The combination of compounds with discrete mechanisms of action might provide a valuable adjunct to contribution for treatment of schistosomiasis-associated disease.
- Differential responses of epithelial cells from urinary and biliary tract to eggs of Schistosoma haematobium and S. mansoniPublication . Nacif-Pimenta, Rafael; da Silva Orfanó, Alessandra; Mosley, Ilana A.; Karinshak, Shannon E.; Ishida, Kenji; Mann, Victoria H.; Coelho, Paulo Marcos Zech; da Costa, José M. Correia; Hsieh, Michael H.; Brindley, Paul J.; Rinaldi, GabrielChronic urogenital schistosomiasis can lead to squamous cell carcinoma of the bladder. The International Agency for Research on Cancer classifies the infection with S. haematobium as a group 1 carcinogen, a definitive cause of cancer. By contrast, hepatointestinal schistosomiasis due to the chronic infection with S. mansoni or S. japonicum associated with liver periportal fibrosis, does not apparently lead to malignancy. The effects of culturing human epithelial cells, HCV29, established from normal urothelium, and H69, established from cholangiocytes, in the presence of S. haematobium or S. mansoni eggs were investigated. Cell growth of cells co-cultured with schistosome eggs was monitored in real time, and gene expression analysis of oncogenesis, epithelial to mesenchymal transition and apoptosis pathways was undertaken. Schistosome eggs promoted proliferation of the urothelial cells but inhibited growth of cholangiocytes. In addition, the tumor suppressor P53 pathway was significantly downregulated when exposed to schistosome eggs, and downregulation of estrogen receptor was predicted in urothelial cells exposed only to S. haematobium eggs. Overall, cell proliferative responses were influenced by both the tissue origin of the epithelial cells and the schistosome species.
- Estrogen receptors in urogenital schistosomiasis and bladder cancer: Estrogen receptor alpha-mediated cell proliferationPublication . Bernardo, Carina; Santos, Júlio; Costa, Céu; Tavares, Ana; Amaro, Teresina; Marques, Igor; Gouveia, Maria João; Félix, Vítor; Afreixo, Vera; Brindley, Paul J.; Costa, José Manuel; Amado, Francisco; Helguero, Luisa; Santos, Lúcio L.Estrogen-like metabolites have been identified in S. haematobium, the helminth parasite that causes urogenital schistosomiasis (UGS) and in patients´ blood and urine during UGS. Estrogen receptor (ER) activation is enriched in the luminal molecular subtype bladder cancer (BlaCa). To date, the significance of ER to these diseases remains elusive. We evaluated ERα and ERβ expression in UGS-related BlaCa (n = 27), UGS-related non-malignant lesions (n = 35), and noninfected BlaCa (n = 80). We investigated the potential of ERα to recognize S. haematobium-derived metabolites by docking and molecular dynamics simulations and studied ERα modulation in vitro using 3 BlaCa cell lines, T24, 5637 and HT1376. ERα was expressed in tumor and stromal cells in approximately 20% noninfected cases and in 30% of UGS-related BlaCa, predominantly in the epithelial cells. Overall, ERα expression was associated with features of tumor aggressiveness such as high proliferation and p53 positive expression. ERα expression correlated with presence of schistosome eggs. ERβ was widely expressed in both cohorts but weaker in UGS-related cases. molecular dynamics simulations of the 4 most abundant S. haematobium-derived metabolites revealed that smaller metabolites have comparable affinity for the ERα active state than 17β-estradiol, while the larger metabolites present higher affinity. Our in vitro findings suggested that ERα activation promotes proliferation in ERα expressing BlaCa cells and that this can be reverted with anti-estrogenic therapy. In summary, we report differential ER expression between UGS-related BlaCa and noninfected BlaCa and provide evidence supporting a role of active ERα during UGS and UGS-induced carcinogenesis.
- Infection with carcinogenic helminth parasites and its production of metabolites induces the formation of DNA-adductsPublication . Gouveia, Maria João; Brindley, Paul J.; Rinaldi, Gabriel; Gärtner, Fátima; da Costa, José M.C.; Vale, NunoBackground: Infections classified as group 1 biological carcinogens include the helminthiases caused by Schistosoma haematobium and Opisthorchis viverrini. The molecular mediators underlying the infection with these parasites and cancer remain unclear. Although carcinogenesis is a multistep process, we have postulated that these parasites release metabolites including oxysterols and estrogen-like metabolites that interact with host cell DNA. How and why the parasite produce/excrete these metabolites remain unclear. A gene encoding a CYP enzyme was identified in schistosomes and opisthorchiids. Therefore, it is reasonable hypothesized that CYP 450 might play a role in generation of pro-inflammatory and potentially carcinogenic compounds produced by helminth parasites such as oxysterols and catechol estrogens. Here, we performed enzymatic assays using several isoforms of CYP 450 as CYP1A1, 2E1 and 3A4 which are involved in the metabolism of chemical carcinogens that have been associated with several cancer. The main aim was the analysis of the role of these enzymes in production of helminth-associated metabolites and DNA-adducts. Method: The effect of cytochrome P450 enzymes CYP 1A1, 2E1 and 3A4 during the interaction between DNA, glycocholic acid and taurochenodeoxycholate sodium on the formation of DNA-adducts and metabolites associated with urogenital schistosomiasis (UGS) and opisthorchiasis was investigated in vitro. Liquid chromatography/mass spectrometry was used to detect and identify metabolites. Main findings: Through the enzymatic assays we provide a deeper understanding of how metabolites derived from helminths are formed and the influence of CYP 450. The assays using compounds similar to those previously observed in helminths as glycocholic acid and taurochenodeoxycholate sodium, allowed the detection of metabolites in their oxidized form and their with DNA. Remarkably, these metabolites were previously associated with schistosomiaisis and opisthorchiasis. Thus, in the future, it may be possible to synthesize this type of metabolites through this methodology and use them in cell lines to clarify the carcinogenesis process associated with these diseases. Principal conclusions: Metabolites similar to those detected in helminths are able to interact with DNA in vitro leading to the formation of DNA adducts. These evidences supported the previous postulate that imply helminth-like metabolites as initiators of helminthiases-associated carcinogenesis. Nonetheless, studies including these kinds of metabolites and cell lines in order to evaluate its potential carcinogenic are required.
- Praziquantel for Schistosomiasis: Single-Drug Metabolism Revisited, Mode of Action, and ResistancePublication . Vale, Nuno; Gouveia, Maria João; Rinaldi, Gabriel; Brindley, Paul J.; Gärtner, Fátima; Correia da Costa, José M.Schistosomiasis, a major neglected tropical disease, affects more than 250 million people worldwide. Treatment of schistosomiasis has relied on the anthelmintic drug praziquantel (PZQ) for more than a generation. PZQ is the drug of choice for the treatment of schistosomiasis; it is effective against all major forms of schistosomiasis, although it is less active against juvenile than mature parasites. A pyrazino-isoquinoline derivative, PZQ is not considered to be toxic and generally causes few or transient, mild side effects. Increasingly, mass drug administration targeting populations in sub-Saharan Africa where schistosomiasis is endemic has led to the appearance of reduced efficacy of PZQ, which portends the selection of drug-resistant forms of these pathogens. The synthesis of improved derivatives of PZQ is attracting attention, e.g., in the (i) synthesis of drug analogues, (ii) rational design of pharmacophores, and (iii) discovery of new compounds from large-scale screening programs. This article reviews reports from the 1970s to the present on the metabolism and mechanism of action of PZQ and its derivatives against schistosomes.
- The antioxidants resveratrol and N-acetylcysteine enhance anthelmintic activity of praziquantel and artesunate against Schistosoma mansoniPublication . Gouveia, Maria João; Brindley, Paul J.; Azevedo, Carlos; Gärtner, Fátima; da Costa, José M. C.; Vale, NunoBackground: Treatment of schistosomiasis has relied on the anthelmintic drug praziquantel (PZQ) for more than a generation. Despite its celebrated performance for treatment and control of schistosomiasis and other platyhelminth infections, praziquantel has some shortcomings and the inability of this drug to counteract disease sequelae prompts the need for novel therapeutic strategies. Methods: Using a host-parasite model involving Biomphalaria glabrata and Schistosoma mansoni we established mechanical transformation of S. mansoni cercariae into newly transformed schistosomula (NTS) and characterized optimal culture conditions. Thereafter, we investigated the antischistosomal activity and ability of the antioxidants N-acetylcysteine (NAC) and resveratrol (RESV) to augment the performance of praziquantel and/or artesunate (AS) against larval stages of the parasite. Drug effects were evaluated by using an automated microscopical system to study live and fixed parasites and by transmission electron microscopy (TEM). Results: Transformation rates of cercariae to schistosomula reached ~ 70% when the manipulation process was optimized. Several culture media were tested, with M199 supplemented with HEPES found to be suitable for S. mansoni NTS. Among the antioxidants studied, RESV alone or combined with anthelminthic drugs achieved better results rather N-acetylcysteine (NAC). TEM observations demonstrated that the combination of AS + RESV induced severe, extensive alterations to the tegument and subtegument of NTS when compared to the constituent compounds alone. Two anthelmintic-antioxidant combinations, praziquantel-resveratrol [combination index (CI) = 0.74] and artesunate-resveratrol (CI = 0.34) displayed moderate and strong synergy, respectively. Conclusions: The use of viability markers including staining with propidium iodide increased the accuracy of drug screening assays against S. mansoni NTS. The synergies observed might be the consequence of increased action by RESV on targets of AS and PZQ and/or they may act through concomitantly on discrete targets to enhance overall antischistosomal action. Combinations of active agents, preferably with discrete modes of action including activity against developmental stages and/or the potential to ameliorate infection-associated pathology, might be pursued in order to identify novel therapeutic interventions.
- The role of estradiol metabolism in urogenital schistosomiasis-induced bladder cancerPublication . Vale, Nuno; Gouveia, Maria J.; Rinaldi, Gabriel; Santos, Júlio; Santos, Lúcio Lara; Brindley, Paul J.; da Costa, José M. CorreiaUrogenital schistosomiasis is a neglected tropical disease that can lead to bladder cancer. How urogenital schistosomiasis induces carcinogenesis remains unclear, although there is evidence that the human blood fluke Schistosoma haematobium, the infectious agent of urogenital schistosomiasis, releases estradiol-like metabolites. These kind of compounds have been implicated in other cancers. Aiming for enhanced understanding of the pathogenesis of the urogenital schistosomiasis-induced bladder cancer, here we review, interpret, and discuss findings of estradiol-like metabolites detected in both the parasite and in the human urine during urogenital schistosomiasis. Moreover, we predict pathways and enzymes that are involved in the production of these metabolites emphasizing their potential effects on the dysregulation of the tumor suppressor gene p53 expression during urogenital schistosomiasis. Enhanced understanding of these potential carcinogens may not only shed light on urogenital schistosomiasis-induced neoplasia of the bladder, but would also facilitate development of interventions and biomarkers for this and other infection-associated cancers at large.
