Browsing by Author "Braeuning, Albert"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Hazard characterization of the mycotoxins enniatins and beauvericin to identify data gaps and improve risk assessment for human healthPublication . Behr, Anne-Cathrin; Fæste, Christiane Kruse; Azqueta, Amaya; Tavares, Ana M.; Spyropoulou, Anastasia; Solhaug, Anita; Olsen, Ann-Karin; Vettorazzi, Ariane; Mertens, Birgit; Zegura, Bojana; Streel, Camille; Ndiaye, Dieynaba; Spilioti, Eliana; Dubreil, Estelle; Buratti, Franca Maria; Crudo, Francesco; Eriksen, Gunnar Sundstøl; Snapkow, Igor; Teixeira, João Paulo; Rasinger, Josef D.; Sanders, Julie; Machera, Kyriaki; Ivanova, Lada; Gaté, Laurent; Le Hegarat, Ludovic; Novak, Matjaz; Smith, Nicola M.; Tait, Sabrina; Fraga, Sónia; Hager, Sonja; Marko, Doris; Braeuning, Albert; Louro, Henriqueta; Silva, Maria João; Dirven, Hubert; Dietrich, JessicaEnniatins (ENNs) and beauvericin (BEA) are cyclic hexadepsipeptide fungal metabolites which have demonstrated antibiotic, antimycotic, and insecticidal activities. The substantial toxic potentials of these mycotoxins are associated with their ionophoric molecular properties and relatively high lipophilicities. ENNs occur extensively in grain and grain-derived products and are considered a food safety issue by the European Food Safety Authority (EFSA). The tolerable daily intake and maximum levels for ENNs in humans and animals remain unestablished due to key toxicological and toxicokinetic data gaps, preventing full risk assessment. Aiming to find critical data gaps impeding hazard characterization and risk evaluation, this review presents a comprehensive summary of the existing information from in vitro and in vivo studies on toxicokinetic characteristics and cytotoxic, genotoxic, immunotoxic, endocrine, reproductive and developmental effects of the most prevalent ENN analogues (ENN A, A1, B, B1) and BEA. The missing information identified showed that additional studies on ENNs and BEA have to be performed before sufficient data for an in-depth hazard characterisation of these mycotoxins become available.
- New approach methodologies to enhance human health risk assessment of immunotoxic properties of chemicals - a PARC (Partnership for the Assessment of Risk from Chemicals) projectPublication . Snapkow, Igor; Smith, Nicola M.; Arnesdotter, Emma; Beekmann, Karsten; Blanc, Etienne B.; Braeuning, Albert; Corsini, Emanuela; Sollner Dolenc, Marija; Duivenvoorde, Loes P.M.; Sundstøl Eriksen, Gunnar; Franko, Nina; Galbiati, Valentina; Gostner, Johanna M.; Grova, Nathalie; Gutleb, Arno C.; Hargitai, Rita; Janssen, Aafke W.F.; Krapf, Solveig A.; Lindeman, Birgitte; Lumniczky, Katalin; Maddalon, Ambra; Mollerup, Steen; Parráková, Lucia; Pierzchalski, Arkadiusz; Pieters, Raymond H.H.; Silva, Maria Joao; Solhaug, Anita; Staal, Yvonne C.M.; Straumfors, Anne; Szatmári, Tünde; Turner, Jonathan D.; Vandebriel, Rob J.; Zenclussen, Ana Claudia; Barouki, RobertAs a complex system governing and interconnecting numerous functions within the human body, the immune system is unsurprisingly susceptible to the impact of toxic chemicals. Toxicants can influence the immune system through a multitude of mechanisms, resulting in immunosuppression, hypersensitivity, increased risk of autoimmune diseases and cancer development. At present, the regulatory assessment of the immunotoxicity of chemicals relies heavily on rodent models and a limited number of Organisation for Economic Co-operation and Development (OECD) test guidelines, which only capture a fraction of potential toxic properties. Due to this limitation, various authorities, including the World Health Organization and the European Food Safety Authority have highlighted the need for the development of novel approaches without the use of animals for immunotoxicity testing of chemicals. In this paper, we present a concise overview of ongoing efforts dedicated to developing and standardizing methodologies for a comprehensive characterization of the immunotoxic effects of chemicals, which are performed under the EU-funded Partnership for the Assessment of Risk from Chemicals (PARC).
