Percorrer por autor "Beyrouthy, Racha"
A mostrar 1 - 3 de 3
Resultados por página
Opções de ordenação
- BlaGES-6 producing Pseudomonas aeruginosa ST235 is involved in resistance to different β-lactamsPublication . de Sousa, Telma; Machado, Sandro; Carvalho, Márcia; Caniça, Manuela; Ramos, Miguel J.N.; Santos, Daniela; Beyrouthy, Racha; Bonnet, Richard; Hébraud, Michel; Gomes, João Paulo; Igrejas, Gilberto; Poeta, PatríciaMultidrug resistance in Pseudomonas aeruginosa, particularly resistance to carbapenem, represents a major challenge for public health. This study investigated resistance mechanisms in three P. aeruginosa isolates: HU63 (blaGES-6 carbapenemase-positive), HU141 (carbapenem-resistant without carbapenemase), and PAO1 (control). Genomic analysis revealed distinct sequence types (ST235 for HU63, ST253 for HU141) and chromosomal integration of resistance genes. HU63 harbored diverse resistance mechanisms, including β-lactamases (bla, bla, bla) and efflux pumps. Minimum inhibitory concentration assays demonstrated HU63's resistance to all β-lactams tested (meropenem, imipenem-cilastatin, ceftazidime, piperacillin-tazobactam), while HU141 remained susceptible except to cefoxitin and cloxacillin. Time-kill assays revealed tolerance phenotypes, with HU63 showing regrowth after 8-24 h despite initial reductions in bacterial density. Gene expression varied significantlydepending on the antibiotic and the isolate. The HU63 isolate (GES-6 positive) stands out for its marked induction of bla in all the antibiotics tested, contributing to its resistance to carbapenems and broad-spectrum cephalosporins. These expression profiles corroborate the classic molecular mechanisms of resistance: regulation of entry pores (oprD), activation of efflux pumps (mexA) and production of β-lactamases (bla, ampC) adapted to each situation. These findings underscore the multifactorial nature of resistance in Carbapenem-resistant Pseudomonas aeruginosa (CRPA), combining enzymatic inactivation, efflux, and genetic adaptability. The study emphasizes the urgent need for genomic surveillance to track high-risk clones and develop therapies targeting tolerance mechanisms alongside traditional resistance.
- Mutational Analysis of Colistin-Resistant Pseudomonas aeruginosa Isolates: From Genomic Background to Antibiotic ResistancePublication . De Sousa, Telma; Wang, Hsin-Yao; Lin, Ting-Wei; Caniça, Manuela; Ramos, Miguel J.N.; Santos, Daniela; Silva, Catarina; Saraiva, Sónia; Beyrouthy, Racha; Bonnet, Richard; Hébraud, Michel; Igrejas, Gilberto; Poeta, PatríciaThis study analyzed eleven isolates of colistin-resistant Pseudomonas aeruginosa, originating from Portugal and Taiwan, which are associated with various pathologies. The results revealed significant genetic diversity among the isolates, with each exhibiting a distinct genetic profile. A prevalence of sequence type ST235 was observed, characterizing it as a high-risk clone, and serotyping indicated a predominance of type O11, associated with chronic respiratory infections in cystic fibrosis (CF) patients. The phylogenetic analysis demonstrated genetic diversity among the isolates, with distinct clades and complex evolutionary relationships. Additionally, transposable elements such as Tn3 and IS6 were identified in all isolates, highlighting their importance in the mobility of antibiotic resistance genes. An analysis of antimicrobial resistance profiles revealed pan-drug resistance in all isolates, with a high prevalence of genes conferring resistance to β-lactams and aminoglycosides. Furthermore, additional analyses revealed mutations in regulatory networks and specific loci previously implicated in colistin resistance, such as pmrA, cprS, phoO, and others, suggesting a possible contribution to the observed resistant phenotype. This study has a strong impact because it not only reveals the genetic diversity and resistance mechanisms in P. aeruginosa but also identifies mutations in regulatory genes associated with colistin resistance.
- Next-Generation Sequencing and MALDI Mass Spectrometry in the Study of Multiresistant Processed Meat Vancomycin-Resistant Enterococci (VRE)Publication . Sabença, Carolina; de Sousa, Telma; Oliveira, Soraia; Viala, Didier; Théron, Laetitia; Chambon, Christophe; Hébraud, Michel; Beyrouthy, Racha; Bonnet, Richard; Caniça, Manuela; Poeta, Patrícia; Igrejas, GilbertoVancomycin-resistant enterococci (VRE), due to their intrinsic resistance to various commonly used antibiotics and their malleable genome, make the treatment of infections caused by these bacteria less effective. The aims of this work were to characterize isolates of Enterococcus spp. that originated from processed meat, through phenotypic and genotypic techniques, as well as to detect putative antibiotic resistance biomarkers. The 19 VRE identified had high resistance to teicoplanin (89%), tetracycline (94%), and erythromycin (84%) and a low resistance to kanamycin (11%), gentamicin (11%), and streptomycin (5%). Based on a Next-Generation Sequencing NGS technique, most isolates were vanA-positive. The most prevalent resistance genes detected were erm(B) and aac(6')-Ii, conferring resistance to the classes of macrolides and aminoglycosides, respectively. MALDI-TOF mass spectrometry (MS) analysis detected an exclusive peak of the Enterococcus genus at m/z (mass-to-charge-ratio) 4428 ± 3, and a peak at m/z 6048 ± 1 allowed us to distinguish Enterococcusfaecium from the other species. Several statistically significant protein masses associated with resistance were detected, such as peaks at m/z 6358.27 and m/z 13237.3 in ciprofloxacin resistance isolates. These results reinforce the relevance of the combined and complementary NGS and MALDI-TOF MS techniques for bacterial characterization.
