Browsing by Author "Becker, N.S."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Core genome phylogenetic analysis of the avian associated Borrelia turdi indicates a close relationship to Borrelia gariniiPublication . Margos, G.; Becker, N.S.; Fingerle, V.; Sing, A.; Ramos, J.A.; Lopes de Carvalho, I.; Norte, A.C.Borrelia burgdorferi sensu lato comprises a species complex of tick-transmitted bacteria that includes the agents of human Lyme borreliosis. Borrelia turdi is a genospecies of this complex that exists in cryptic transmission cycles mainly between ornithophilic tick vectors and their avian hosts. The species has been originally discovered in avian transmission cycles in Asia but has increasingly been found in Europe. Next generation sequencing was used to sequence the genome of B. turdi isolates obtained from ticks feeding on birds in Portugal to better understand the evolution and phylogenetic relationship of this avian and ornithophilic tick-associated genospecies. Here we use draft genomes of these B. turdi isolates for comparative analysis and to determine the taxonomic position within the B. burgdorferi s.l. species complex. The main chromosomes showed a maximum similarity of 93% to other Borrelia species whilst most plasmids had lower similarities. All three isolates had nine or 10 plasmids and, interestingly, one plasmid with a novel partitioning protein; this plasmid was termed lp30. Phylogenetic analysis of multilocus sequence typing housekeeping genes and 113 single copy orthologous genes revealed that the isolates clustered according to their classification as B. turdi. In phylogenies generated from these 113 genes the isolates cluster together with other Eurasian genospecies and form a sister clade to the avian associated B. garinii and the rodent associated B. bavariensis. These findings show that Borrelia species maintained in cryptic ecological cycles need to be included to fully understand the complex ecology and evolutionary history of this bacterial species complex.
- Host dispersal shapes the population structure of a tick-borne bacterial pathogenPublication . Norte, A.C.; Margos, G.; Becker, N.S.; Albino Ramos, J.; Núncio, M.S.; Fingerle, V.; Araújo, P.M.; Adamík, P.; Alivizatos, H.; Barba, E.; Barrientos, R.; Cauchard, L; Csörgő, T.; Diakou, A.; Dingemanse, N.J.; Doligez, B.; Dubiec, A.; Eeva, T.; Flaisz, B.; Grim, T.; Hau, M.; Hornok, S.; Kazantzidis, S.; Kováts, D.; Krause, F.; Literak, I.; Mänd, R.; Mentesana, L.; Morinay, J.; Mutanen, M.; Neto, J.M.; Nováková, M.; Sanz, J.J.; Pascoal da Silva, L.; Sprong, H.; Tirri, I.S.; Török, J.; Trilar, T.; Tyller, Z.; Visser, M.E.; Lopes de Carvalho, I.f ticks and their associated pathogens. The life cycle of tick-borne pathogens is complex and their evolutionary ecology is shaped by the interactions with vertebrate hosts and tick vectors (Kurtenbach et al., 2006). This study focused on the ecology and genetic diversity of B. burgdorferi s.l. as a model to investigate the drivers of the population structure and to understand the role of host- associated dispersal on the evolution of tick-borne pathogens. This represents a consequential question in the ecology and evolution of any pathogen. Borrelia burgdorferi s.l. is a bacterial complex of over 20 known genospecies, including the etiologic agents of Lyme borreliosis (Casjens et al., 2011; Margos et al., 2015), whose main vectors are ticks of the genus Ixodes (Eisen & Lane, 2002). These bacteria are widespread in Europe, Asia and North America and are also present in North Africa (Margos, Vollmer, Ogden, & Fish, 2011; Zhioua et al., 1999). Different Borrelia genospecies have different patterns of association with vertebrate reservoir hosts (Humair & Gern, 2000; Kurtenbach, Peacey, et al., 1998) because of the immunological host response, mediated by the action of the host's complement system (Kurtenbach et al., 2002). While B. burgdorferi sensu stricto (s.s.) is a generalist genospecies, Borrelia afzelii is mostly associated with mammalian hosts such as rodents, whereas Borrelia valaisiana, Borrelia garinii and Borrelia turdi are mostly associated with birds (Heylen, 2016; Margos et al., 2011). Because tick vectors cannot move large distances independent of hosts, it has been suggested that host specialization determines the spread and dispersal of B. burgdorferi s.l. genospecies (Kurtenbach et al., 2010; Sonenshine & Mather, 1994). Because birds are both important hosts for some Borrelia genospecies and for various species of vector ticks, they act as a driving force shaping B. burgdorferi s.l. distribution and phylogeographical patterns (Margos et al., 2011; Vollmer et al., 2011). Here, we assessed the role of passerine birds as hosts and dispersers of B. burgdorferi s.l. We tested the hypothesis that infection prevalence with Borrelia genospecie
- Phylogenetic analysis of the ornithophilic Borrelia turdi using next generation sequencing.Publication . Margos, G.; Becker, N.S.; Ramos, J.A.; Carvalho, I.L.; Norte, A.C.Borrelia turdi is a genospecies of the B. burgdorferi sensu lato complex that exists in crytic transmission cycles mainly between ornithophilic tick vectors and their avian host.
