Browsing by Author "Barros, Alberto"
Now showing 1 - 10 of 19
Results Per Page
Sort Options
- Actionable secondary findings following exome sequencing of 836 non-obstructive azoospermia cases and their value in patient managementPublication . Kasak, Laura; Lillepea, Kristiina; Nagirnaja, Liina; Aston, Kenneth I.; Schlegel, Peter N.; Gonçalves, João; Carvalho, Filipa; Moreno-Mendoza, Daniel; Almstrup, Kristian; Eisenberg, Michael L.; Jarvi, Keith A.; O’Bryan, Moira K.; Lopes, Alexandra M.; Conrad, Donald F.; Nagirnaja, Liina; Aston, Kenneth I.; Carrell, Douglas T.; Hotaling, James M.; Jenkins, Timothy G.; McLachlan, Rob; O’Bryan, Moira K.; Schlegel, Peter N.; Eisenberg, Michael L.; Sandlow, Jay I.; Jungheim, Emily S.; Omurtag, Kenan R.; Lopes, Alexandra M.; Seixas, Susana; Carvalho, Filipa; Fernandes, Susana; Barros, Alberto; Laan, Maris; Punab, Margus; Rajpert-De Meyts, Ewa; Jørgensen, Niels; Almstrup, Kristian; Krausz, Csilla G.; Jarvi, Keith A.; Punab, Margus; Laan, MarisStudy question: What is the load, distribution and added clinical value of secondary findings (SFs) identified in exome sequencing (ES) of patients with non-obstructive azoospermia (NOA)? Summary answer: One in 28 NOA cases carried an identifiable, medically actionable SF. What is known already: In addition to molecular diagnostics, ES allows assessment of clinically actionable disease-related gene variants that are not connected to the patient's primary diagnosis, but the knowledge of which may allow the prevention, delay or amelioration of late-onset monogenic conditions. Data on SFs in specific clinical patient groups, including reproductive failure, are currently limited. Study design, size, duration: The study group was a retrospective cohort of patients with NOA recruited in 10 clinics across six countries and formed in the framework of the international GEMINI (The GEnetics of Male INfertility Initiative) study. Participants/materials, setting, methods: ES data of 836 patients with NOA were exploited to analyze SFs in 85 genes recommended by the American College of Medical Genetics and Genomics (ACMG), Geisinger's MyCode, and Clinical Genome Resource. The identified 6374 exonic variants were annotated with ANNOVAR and filtered for allele frequency, retaining 1381 rare or novel missense and loss-of-function variants. After automatic assessment of pathogenicity with ClinVar and InterVar, 87 variants were manually curated. The final list of confident disease-causing SFs was communicated to the corresponding GEMINI centers. When patient consent had been given, available family health history and non-andrological medical data were retrospectively assessed. Main results and the role of chance: We found a 3.6% total frequency of SFs, 3.3% from the 59 ACMG SF v2.0 genes. One in 70 patients carried SFs in genes linked to familial cancer syndromes, whereas 1 in 60 cases was predisposed to congenital heart disease or other cardiovascular conditions. Retrospective assessment confirmed clinico-molecular diagnoses in several cases. Notably, 37% (11/30) of patients with SFs carried variants in genes linked to male infertility in mice, suggesting that some SFs may have a co-contributing role in spermatogenic impairment. Further studies are needed to determine whether these observations represent chance findings or the profile of SFs in NOA patients is indeed different from the general population. Limitations, reasons for caution: One limitation of our cohort was the low proportion of non-Caucasian ethnicities (9%). Additionally, as comprehensive clinical data were not available retrospectively for all men with SFs, we were not able to confirm a clinico-molecular diagnosis and assess the penetrance of the specific variants. Wider implications of the findings: For the first time, this study analyzed medically actionable SFs in men with spermatogenic failure. With the evolving process to incorporate ES into routine andrology practice for molecular diagnostic purposes, additional assessment of SFs can inform about future significant health concerns for infertility patients. Timely detection of SFs and respective genetic counseling will broaden options for disease prevention and early treatment, as well as inform choices and opportunities regarding family planning. A notable fraction of SFs was detected in genes implicated in maintaining genome integrity, essential in both mitosis and meiosis. Thus, potential genetic pleiotropy may exist between certain adult-onset monogenic diseases and NOA.
- An Alu-mediated 1Mb deletion removes Wilms’ tumor 1 (WT1) but not PAX6 in a patient with isolated cryptorchidismPublication . Seabra, Catarina; Quental, Sofia; Neto, Ana; Carvalho, Filipa; Gonçalves, João; Fernandes, Susana; Sousa, Mário; Barros, Alberto; Amorim, António; Lopes, Alexandra MObjective: We have recently performed an array-based genome-wide analysis of structural variants in a cohort of patients with non-obstructive azoospermia (NOA) and found a cryptic deletion of approximately 1Mb in 11p13, spanning the WT1 gene but not PAX6, in a Portuguese patient with clinical history of cryptorchidism during childhood?. Here we performed the molecular characterization of this novel deletion, to precisely map the breakpoints of this deletion, and evaluated the prevalence of focal WT1 genetic alterations in infertile Portuguese patients with cryptorchidism. Design: Fine molecular characterization of a heterozygous large deletion in 11p13 in one azoospermic patient (with clinical history of cryptorchidism) and screening for WT1 exonic microdeletions and mutations in a group of 31 Portuguese patients with uni- or bi-lateral cryptorchidism. Materials and Methods: Multiplex ligation-dependent probe amplification (MLPA), Long Range PCR; PCR amplification of the WT1 exons and proximal flanking sequences followed by Sanger sequencing. Results: We confirmed by MLPA the ~1Mb deletions at 11p13 spanning six genes - WT1, PRRG4, QSER1, TCP11L1, CSTF3 and HIPK3. Examination of the deletion breakpoint showed that it lies within highly homologous Alu Y sequences. Therefore the likely mechanism for this deletion was Alu-mediated non-allelic homologous recombination (NAHR). No mutations were found in the single allele present in this patient suggesting that the phenotype probably results from WT1 haploinsufficiency. We found no additional WT1 alterations in our group of patients with cryptorchidism. Conclusions: To our knowledge this is the smallest as yet described deletion encompassing the WT1 gene, which results in a non-syndromic clinical presentation of infertility. Repeat-mediated non-allelic recombination is an alternative mechanism for 11p13 deletions spanning WT1. Based on our results WT1 genetic defects are not frequently involved in isolated cryptorchidism, even though more patients should be analyzed. Support: This work was partially funded by the Portuguese Foundation for Science and Technology FCT/MCTES (PIDDAC) and co-financed by European funds (FEDER) through the COMPETE program, research grant PTDC/SAU-GMG/101229/2008 to AML. IPATIMUP is an Associate Laboratory of the Portuguese Ministry of Science, Technology, and Higher Education and is partially supported by FCT. AML is the recipient of a postdoctoral fellowship from FCT (SFRH/BPD/73366/2010).
- Assessing the impact of Copy Number Variation on severe spermatogenic impairment with exome dataPublication . Lopes, Alexandra; Nagirnaja, Liina; Filipa, Carvalho; Gonçalves, João; Fernades, Susana; Pereira-Caetano, Iris; Almstrup, Kristian; Rajpert-De Meyts, Ewa; Seixas, Susana; Houston, Brendan; Barros, Alberto; O’Bryan, Moira; Aston, Kenneth; Conrad, Donald; on Behalf of the GEMINI ConsortiumBackground: Azoospermia, the most severe form of male infertility, affects approximately 1% of men worldwide and in the great majority of the cases the etiology of the disease remains unidentified. Given the large number of genes involved in spermatogenesis it is likely that a proportion of cases of idiopathic azoospermia have a genetic basis. We have previously described, using SNP arrays, an excess of low frequency copy number variants (CNVs) in both the autosomes and the sex chromosomes in non-obstructive azoospermia (NOA) suggesting an heterogeneous genetic ethiology for this condition.
- Common genetic variation in KATNAL1 non-coding regions is involved in the susceptibility to severe phenotypes of male infertilityPublication . Cerván‐Martín, Miriam; Bossini‐Castillo, Lara; Guzmán‐Jiménez, Andrea; Rivera‐Egea, Rocío; Garrido, Nicolás; Lujan, Saturnino; Romeu, Gema; Santos‐Ribeiro, Samuel; Castilla, José Antonio; Gonzalvo, María del Carmen; Clavero, Ana; Maldonado, Vicente; Vicente, Francisco Javier; Burgos, Miguel; Jiménez, Rafael; González‐Muñoz, Sara; Sánchez‐Curbelo, Josvany; López‐Rodrigo, Olga; Pereira‐Caetano, Iris; Marques, Patricia Isabel; Carvalho, Filipa; Barros, Alberto; Bassas, Lluís; Seixas, Susana; Gonçalves, João; Larriba, Sara; Lopes, Alexandra Manuel; Palomino‐Morales, Rogelio Jesús; Carmona, Francisco DavidBackground: Previous studies in animal models evidenced that genetic mutations of KATNAL1, resulting in dysfunction of its encoded protein, lead to male infertility through disruption of microtubule remodelling and premature germ cell exfoliation. Subsequent studies in humans also suggested a possible role of KATNAL1 single nucleotide polymorphisms in the development of male infertility as a consequence of severe spermatogenic failure. Objectives: The main objective of the present study is to evaluate the effect of the common genetic variation of KATNAL1 in a large and phenotypically well-characterised cohort of infertile men because of severe spermatogenic failure. Materials and methods: A total of 715 infertile men because of severe spermato genic failure, including 210 severe oligospermia and 505 non-obstructive azoospermia patients, as well as 1058 unaffected controls were genotyped for three KATNAL1 single-nucleotide polymorphism taggers (rs2077011, rs7338931 and rs2149971). Case–control association analyses by logistic regression assuming different models and in silico functional characterisation of risk variants were conducted. Results: Genetic associations were observed between the three analysed taggers and different severe spermatogenic failure groups. However, in all cases, the haplotype model (rs2077011*C | rs7338931*T | rs2149971*A) better explained the observed associations than the three risk alleles independently. This haplotype was associated with non-obstructive azoospermia (adjusted p = 4.96E-02, odds ratio = 2.97), Sertoli cell only syndrome (adjusted p = 2.83E-02, odds ratio = 5.16) and testicular sperm extraction unsuccessful outcomes (adjusted p = 8.99E-04, odds ratio = 6.13). The in silico analyses indicated that the effect on severe spermatogenic failure predisposition could be because of an alteration of the KATNAL1 splicing pattern. Conclusions: Specific allelic combinations of KATNAL1 genetic polymorphisms may confer a risk of developing severe male infertility phenotypes by favouring the overrepresentation of a short non-functional transcript isoform in the testis.
- Common Variation in the PIN1 Locus Increases the Genetic Risk to Suffer from Sertoli Cell-Only SyndromePublication . Cerván-Martín, Miriam; Bossini-Castillo, Lara; Guzmán-Jimenez, Andrea; Rivera-Egea, Rocío; Garrido, Nicolás; Luján, Saturnino; Romeu, Gema; Santos-Ribeiro, Samuel; Castilla, José A.; Gonzalvo, M. Carmen; Clavero, Ana; Vicente, F. Javier; Maldonado, Vicente; González-Muñoz, Sara; Rodríguez-Martín, Inmaculada; Burgos, Miguel; Jiménez, Rafael; Pinto, Maria Graça; Pereira, Isabel; Nunes, Joaquim; Sánchez-Curbelo, Josvany; López-Rodrigo, Olga; Pereira-Caetano, Iris; Marques, Patricia Isabel; Carvalho, Filipa; Barros, Alberto; Bassas, Lluís; Seixas, Susana; Gonçalves, João; Larriba, Sara; Lopes, Alexandra M.; Carmona, F. David; Palomino-Morales, Rogelio J.We aimed to analyze the role of the common genetic variants located in the PIN1 locus, a relevant prolyl isomerase required to control the proliferation of spermatogonial stem cells and the integrity of the blood-testis barrier, in the genetic risk of developing male infertility due to a severe spermatogenic failure (SPGF). Genotyping was performed using TaqMan genotyping assays for three PIN1 taggers (rs2287839, rs2233678 and rs62105751). The study cohort included 715 males diagnosed with SPGF and classified as suffering from non-obstructive azoospermia (NOA, n = 505) or severe oligospermia (SO, n = 210), and 1058 controls from the Iberian Peninsula. The allelic frequency differences between cases and controls were analyzed by the means of logistic regression models. A subtype specific genetic association with the subset of NOA patients classified as suffering from the Sertoli cell-only (SCO) syndrome was observed with the minor alleles showing strong risk effects for this subset (ORaddrs2287839 = 1.85 (1.17-2.93), ORaddrs2233678 = 1.62 (1.11-2.36), ORaddrs62105751 = 1.43 (1.06-1.93)). The causal variants were predicted to affect the binding of key transcription factors and to produce an altered PIN1 gene expression and isoform balance. In conclusion, common non-coding single-nucleotide polymorphisms located in PIN1 increase the genetic risk to develop SCO.
- Contribution of TEX15 genetic variants to the risk of developing severe non-obstructive oligozoospermiaPublication . Guzmán-Jiménez, Andrea; González-Muñoz, Sara; Cerván-Martín, Miriam; Rivera-Egea, Rocío; Garrido, Nicolás; Luján, Saturnino; Santos-Ribeiro, Samuel; Castilla, José A.; Gonzalvo, M. Carmen; Clavero, Ana; Vicente, F. Javier; Maldonado, Vicente; Villegas-Salmerón, Javier; Burgos, Miguel; Jiménez, Rafael; Pinto, Maria Graça; Pereira, Isabel; Nunes, Joaquim; Sánchez-Curbelo, Josvany; López-Rodrigo, Olga; Pereira-Caetano, Iris; Marques, Patricia Isabel; Carvalho, Filipa; Barros, Alberto; Bassas, Lluís; Seixas, Susana; Gonçalves, João; Lopes, Alexandra M.; Larriba, Sara; Palomino-Morales, Rogelio J.; Carmona, F. David; Bossini-Castillo, LaraBackground: Severe spermatogenic failure (SPGF) represents one of the most relevant causes of male infertility. This pathological condition can lead to extreme abnormalities in the seminal sperm count, such as severe oligozoospermia (SO) or non-obstructive azoospermia (NOA). Most cases of SPGF have an unknown aetiology, and it is known that this idiopathic form of male infertility represents a complex condition. In this study, we aimed to evaluate whether common genetic variation in TEX15, which encodes a key player in spermatogenesis, is involved in the susceptibility to idiopathic SPGF. Materials and Methods: We designed a genetic association study comprising a total of 727 SPGF cases (including 527 NOA and 200 SO) and 1,058 unaffected men from the Iberian Peninsula. Following a tagging strategy, three tag single-nucleotide polymorphisms (SNPs) of TEX15 (rs1362912, rs323342, and rs323346) were selected for genotyping using TaqMan probes. Case-control association tests were then performed by logistic regression models. In silico analyses were also carried out to shed light into the putative functional implications of the studied variants. Results: A significant increase in TEX15-rs1362912 minor allele frequency (MAF) was observed in the group of SO patients (MAF = 0.0842) compared to either the control cohort (MAF = 0.0468, OR = 1.90, p = 7.47E-03) or the NOA group (MAF = 0.0472, OR = 1.83, p = 1.23E-02). The genotype distribution of the SO population was also different from those of both control (p = 1.14E-02) and NOA groups (p = 4.33–02). The analysis of functional annotations of the human genome suggested that the effect of the SO-associated TEX15 variants is likely exerted by alteration of the binding affinity of crucial transcription factors for spermatogenesis. Conclusion: Our results suggest that common variation in TEX15 is involved in the genetic predisposition to SO, thus supporting the notion of idiopathic SPGF as a complex trait.
- A de novo paradigm for male infertilityPublication . Oud, M.S.; Smits, R.M.; Smith, H.E.; Mastrorosa, F.K.; Holt, G.S.; Houston, B.J.; de Vries, P.F.; Alobaidi, B.K.S.; Batty, L.E.; Ismail, H.; Greenwood, J.; Sheth, H.; Mikulasova, A.; Astuti, G.D.N.; Gilissen, C.; McEleny, K.; Turner, H.; Coxhead, J.; Cockell, S.; Braat, D.D.M.; Fleischer, K.; D’Hauwers, K.W.M.; Schaafsma, E.; Conrad, Donald F.; Nagirnaja, Liina; Aston, Kenneth I.; Carrell, Douglas T.; Hotaling, James M.; Jenkins, Timothy G.; McLachlan, Rob; O’Bryan, Moira K.; Schlegel, Peter N.; Eisenberg, Michael L.; Sandlow, Jay I.; Jungheim, Emily S.; Omurtag, Kenan R.; Lopes, Alexandra M.; Seixas, Susana; Carvalho, Filipa; Fernandes, Susana; Barros, Alberto; Gonçalves, João; Caetano, Iris; Pinto, Graça; Correia, Sónia; Laan, Maris; Punab, Margus; Meyts, Ewa Rajpert-De; Jørgensen, Niels; Almstrup, Kristian; Krausz, Csilla G.; Jarvi, Keith A.; Nagirnaja, L.; Conrad, D.F.; Friedrich, C.; Kliesch, S.; Aston, K.I.; Riera-Escamilla, A.; Krausz, C.; Gonzaga-Jauregui, C.; Santibanez-Koref, M.; Elliott, D. J.; Vissers, L.E.L.M.; Tüttelmann, F.; O’Bryan, M.K.; Ramos, L.; Xavier, M.J.; van der Heijden, G.W.; Veltman, J.A.De novo mutations are known to play a prominent role in sporadic disorders with reduced fitness. We hypothesize that de novo mutations play an important role in severe male infertility and explain a portion of the genetic causes of this understudied disorder. To test this hypothesis, we utilize trio-based exome sequencing in a cohort of 185 infertile males and their unaffected parents. Following a systematic analysis, 29 of 145 rare (MAF < 0.1%) protein-altering de novo mutations are classified as possibly causative of the male infertility phenotype. We observed a significant enrichment of loss-of-function de novo mutations in loss-of-function-intolerant genes (p-value = 1.00 × 10−5) in infertile men compared to controls. Additionally, we detected a significant increase in predicted pathogenic de novo missense mutations affecting missense-intolerant genes (p-value = 5.01 × 10−4) in contrast to predicted benign de novo mutations. One gene we identify, RBM5, is an essential regulator of male germ cell pre-mRNA splicing and has been previously implicated in male infertility in mice. In a follow-up study, 6 rare pathogenic missense mutations affecting this gene are observed in a cohort of 2,506 infertile patients, whilst we find no such mutations in a cohort of 5,784 fertile men (p-value = 0.03). Our results provide evidence for the role of de novo mutations in severe male infertility and point to new candidate genes affecting fertility.
- Diverse monogenic subforms of human spermatogenic failurePublication . Nagirnaja, Liina; Lopes, Alexandra M.; Charng, Wu-Lin; Miller, Brian; Stakaitis, Rytis; Golubickaite, Ieva; Stendahl, Alexandra; Luan, Tianpengcheng; Friedrich, Corinna; Mahyari, Eisa; Fadial, Eloise; Kasak, Laura; Vigh-Conrad, Katinka; Oud, Manon S.; Xavier, Miguel J.; Cheers, Samuel R.; James, Emma R.; Guo, Jingtao; Jenkins, Timothy G.; Riera-Escamilla, Antoni; Barros, Alberto; Carvalho, Filipa; Fernandes, Susana; Gonçalves, João; Gurnett, Christina A.; Jørgensen, Niels; Jezek, Davor; Jungheim, Emily S.; Kliesch, Sabine; McLachlan, Robert I.; Omurtag, Kenan R.; Pilatz, Adrian; Sandlow, Jay I.; Smith, James; Eisenberg, Michael L.; Hotaling, James M.; Jarvi, Keith A.; Punab, Margus; Rajpert-De Meyts, Ewa; Carrell, Douglas T.; Krausz, Csilla; Laan, Maris; O’Bryan, Moira K.; Schlegel, Peter N.; Tüttelmann, Frank; Veltman, Joris A.; Almstrup, Kristian; Aston, Kenneth I.; Conrad, Donald F.Non-obstructive azoospermia (NOA) is the most severe form of male infertility and typically incurable. Defining the genetic basis of NOA has proven chal lenging, and the most advanced classification of NOA subforms is not based on genetics, but simple description of testis histology. In this study, we exome sequenced over 1000 clinically diagnosed NOA cases and identified a plausible recessive Mendelian cause in 20%. We find further support for 21 genes in a 2-stage burden test with 2072 cases and 11,587 fertile controls. The disrupted genes are primarily on the autosomes, enriched for undescribed human “knockouts”, and, for the most part, have yet to be linked to a Mendelian trait. Integration with single-cell RNA sequencing data shows that azoospermia genes can be grouped into molecular subforms with synchronized expression patterns, and analogs of these subforms exist in mice. This analysis framework identifies groups of genes with known roles in spermatogenesis but also reveals unrecognized subforms, such as a set of genes expressed across mitotic divisions of differentiating spermatogonia. Our findings highlight NOA as an understudied Mendelian disorder and provide a conceptual structure for organizing the complex genetics of male infertility, which may provide a rational basis for disease classification
- Effect and in silico characterization of genetic variants associated with severe spermatogenic disorders in a large Iberian cohortPublication . Cerván‐Martín, Miriam; Bossini‐Castillo, Lara; Rivera‐Egea, Rocío; Garrido, Nicolás; Luján, Saturnino; Romeu, Gema; Santos‐Ribeiro, Samuel; IVIRMA Group, Lisbon Clinical Group; Castilla, José A.; Gonzalvo, María del Carmen; Clavero, Ana; Vicente, Francisco Javier; Guzmán‐Jiménez, Andrea; Burgos, Miguel; Barrionuevo, Francisco Javier; Jiménez, Rafael; Sánchez‐Curbelo, Josvany; López‐Rodrigo, Olga; Peraza, María Fernanda; Pereira‐Caetano, Iris; Marques, Patrícia Isabel; Carvalho, Filipa; Barros, Alberto; Bassas, Luís; Seixas, Susana; Gonçalves, João; Larriba, Sara; Lopes, Alexandra Manuel; Carmona, Francisco David; Palomino‐Morales, Rogelio JesúsBackground: Severe spermatogenic failure (SpF) represents the most extreme manifestation of male infertility, as it decreases drastically the semen quality leading to either severe oligospermia (SO, <5 million spermatozoa/mL semen) or non-obstructive azoospermia (NOA, complete lack of spermatozoa in the ejaculate without obstructive causes). Objectives: The main objective of the present study is to analyze in the Iberian population the effect of 6 single-nucleotide polymorphisms (SNPs) previously associated with NOA in Han Chinese through genome-wide association studies (GWAS) and to establish their possible functional relevance in the development of specific SpF patterns. Materials and methods: We genotyped 674 Iberian infertile men (including 480 NOA and 194 SO patients) and 1058 matched unaffected controls for the GWAS-associated variants PRMT6-rs12097821, PEX10-rs2477686, CDC42BPA-rs3000811, IL17A-rs13206743, ABLIM1-rs7099208, and SOX5-rs10842262. Their association with SpF, SO, NOA, and different NOA phenotypes was evaluated by logistic regression models, and their functional relevance was defined by comprehensive interrogation of public resources. Results: ABLIM1-rs7099208 was associated with SpF under both additive (OR = 0.86, p = 0.036) and dominant models (OR = 0.78, p = 0.026). The CDC42BPA-rs3000811 minor allele frequency was significantly increased in the subgroup of NOA patients showing maturation arrest (MA) of germ cells compared to the remaining NOA cases under the recessive model (OR = 4.45, p = 0.044). The PEX10-rs2477686 SNP was associated with a negative testicular sperm extraction (TESE) outcome under the additive model (OR = 1.32, p = 0.034). The analysis of functional annotations suggested that these variants affect the testis-specific expression of nearby genes and that lincRNA may play a role in SpF. Conclusions: Our data support the association of three previously reported NOA risk variants in Asians (ABLIM1-rs7099208, CDC42BPA-rs3000811, and PEX10-rs2477686) with different manifestations of SpF in Iberians of European descent, likely by influencing gene expression and lincRNA deregulation.
- Evaluation of Male Fertility-Associated Loci in a European Population of Patients with Severe Spermatogenic ImpairmentPublication . Cerván-Martín, Miriam; Bossini-Castillo, Lara; Rivera-Egea, Rocío; Garrido, Nicolás; Luján, Saturnino; Romeu, Gema; Santos-Ribeiro, Samuel; Castilla, José A.; Gonzalvo, M. Carmen; Clavero, Ana; Vicente, F. Javier; Guzmán-Jiménez, Andrea; Costa, Cláudia; Llinares-Burguet, Inés; Khantham, Chiranan; Burgos, Miguel; Barrionuevo, Francisco J.; Jiménez, Rafael; Sánchez-Curbelo, Josvany; López-Rodrigo, Olga; Peraza, M. Fernanda; Pereira-Caetano, Iris; Marques, Patricia I.; Carvalho, Filipa; Barros, Alberto; Bassas, Lluís; Seixas, Susana; Gonçalves, João; Larriba, Sara; Lopes, Alexandra M.; Palomino-Morales, Rogelio J.; Carmona, F. DavidInfertility is a growing concern in developed societies. Two extreme phenotypes of male infertility are non-obstructive azoospermia (NOA) and severe oligospermia (SO), which are characterized by severe spermatogenic failure (SpF). We designed a genetic association study comprising 725 Iberian infertile men as a consequence of SpF and 1058 unaffected controls to evaluate whether five single-nucleotide polymorphisms (SNPs), previously associated with reduced fertility in Hutterites, are also involved in the genetic susceptibility to idiopathic SpF and specific clinical entities. A significant difference in the allele frequencies of USP8-rs7174015 was observed under the recessive model between the NOA group and both the control group (p = 0.0226, OR = 1.33) and the SO group (p = 0.0048, OR = 1.78). Other genetic associations for EPSTI1-rs12870438 and PSAT1-rs7867029 with SO and between TUSC1-rs10966811 and testicular sperm extraction (TESE) success in the context of NOA were observed. In silico analysis of functional annotations demonstrated cis-eQTL effects of such SNPs likely due to the modification of binding motif sites for relevant transcription factors of the spermatogenic process. The findings reported here shed light on the molecular mechanisms leading to severe phenotypes of idiopathic male infertility, and may help to better understand the contribution of the common genetic variation to the development of these conditions.
