INSA - Artigos em revistas internacionais
Permanent URI for this collection
Browse
Browsing INSA - Artigos em revistas internacionais by Author "Achilleos, Souzana"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Impacts of land-use and land-cover changes on temperature-related mortalityPublication . Orlov, Anton ; De Hertog, Steven J. ; Havermann, Felix ; Guo, Suqi ; Manola, Iris ; Lejeune, Quentin ; Schleussner, Carl-Friedrich ; Thiery, Wim ; Pongratz, Julia ; Humpenöder, Florian ; Popp, Alexander ; Aunan, Kristin ; Armstrong, Ben ; Royé, Dominic ; Cvijanovic, Ivana ; Lavigne, Eric ; Achilleos, Souzana ; Bell, Michelle ; Masselot, Pierre ; Sera, Francesco ; Vicedo-Cabrera, Ana Maria ; Gasparrini, Antonio ; Mistry, Malcolm N. ; Multi-Country Multi-City (MCC) Collaborative Research NetworkBackground: Land-use and land-cover change (LULCC) can substantially affect climate through biogeochemical and biogeophysical effects. Here, we examine the future temperature-mortality impact for two contrasting LULCC scenarios in a background climate of low greenhouse gas concentrations. The first LULCC scenario implies a globally sustainable land use and socioeconomic development (sustainability). In the second LULCC scenario, sustainability is implemented only in the Organisation for Economic Cooperation and Development countries (inequality). Methods: Using the Multi-Country Multi-City (MCC) dataset on mortality from 823 locations in 52 countries and territories, we estimated the temperature-mortality exposure-response functions (ERFs). The LULCC and noLULCC scenarios were implemented in three fully coupled Earth system models (ESMs): Community Earth System Model, Max Planck Institute Earth System Model, and European Consortium Earth System Model. Next, using temperature from the ESMs' simulations and the estimated location-specific ERFs, we assessed the temperature-related impact on mortality for the LULCC and noLULCC scenarios around the mid and end century. Results: Under sustainability, the multimodel mean changes in excess mortality range from -1.1 to +0.6 percentage points by 2050-2059 across all locations and from -1.4 to +0.5 percentage points by 2090-2099. Under inequality, these vary from -0.7 to +0.9 percentage points by 2050-2059 and from -1.3 to +2 percentage points by 2090-2099. Conclusions: While an unequal socioeconomic development and unsustainable land use could increase the burden of heat-related mortality in most regions, globally sustainable land use has the potential to reduce it in some locations. However, the total (cold and heat) impact on mortality is very location specific and strongly depends on the underlying climate change scenario due to nonlinearity in the temperature-mortality relationship.
- Temperature frequency and mortality: Assessing adaptation to local temperaturePublication . Wu, Yao; Wen, Bo; Gasparrini, Antonio; Armstrong, Ben; Sera, Francesco; Lavigne, Eric; Li, Shanshan; Guo, Yuming; Overcenco, Ala; Urban, Aleš; Schneider, Alexandra; Entezari, Alireza; Vicedo-Cabrera, Ana Maria; Zanobetti, Antonella; Analitis, Antonis; Zeka, Ariana; Tobias, Aurelio; Nunes, Baltazar; Alahmad, Barrak; Forsberg, Bertil; Íñiguez, Carmen; Ameling, Caroline; Cruz Valencia, César De la; Houthuijs, Danny; Dung, Do Van; Roye, Dominic; Indermitte, Ene; Mayvaneh, Fatemeh; Acquaotta, Fiorella; de'Donato, Francesca; Carrasco-Escobar, Gabriel; Kan, Haidong; Carlsen, Hanne Krage; Orru, Hans; Kim, Ho; Holobaca, Iulian-Horia; Kyselý, Jan; Madureira, Joana; Schwartz, Joel; Jaakkola, Jouni J.K.; Katsouyanni, Klea; Diaz, Magali Hurtado; Ragettli, Martina S.; Hashizume, Masahiro; Pascal, Mathilde; Coelho, Micheline de Sousa Zanotti Stagliorio; Ortega, Nicolás Valdés; Ryti, Niilo; Scovronick, Noah; Michelozzi, Paola; Correa, Patricia Matus; Goodman, Patrick; Saldiva, Paulo Hilario Nascimento; Raz, Raanan; Abrutzky, Rosana; Osorio, Samuel; Pan, Shih-Chun; Rao, Shilpa; Tong, Shilu; Achilleos, Souzana; Dang, Tran Ngoc; Colistro, Valentina; Huber, Veronika; Lee, Whanhee; Seposo, Xerxes; Honda, Yasushi; Kim, Yoonhee; Guo, Yue Leon; Li, Shanshan; Guo, YumingAssessing the association between temperature frequency and mortality can provide insights into human adaptation to local ambient temperatures. We collected daily time-series data on mortality and temperature from 757 locations in 47 countries/regions during 1979–2020. We used a two-stage time series design to assess the association between temperature frequency and all-cause mortality. The results were pooled at the national, regional, and global levels. We observed a consistent decrease in the risk of mortality as the normalized frequency of temperature increases across the globe. The average increase in mortality risk comparing the 10th to 100th percentile of normalized frequency was 13.03% (95% CI: 12.17–13.91), with substantial regional differences (from 4.56% in Australia and New Zealand to 33.06% in South Europe). The highest increase in mortality was observed for high-income countries (13.58%, 95% CI: 12.56–14.61), followed by lower-middle-income countries (12.34%, 95% CI: 9.27–15.51). This study observed a declining risk of mortality associated with higher temperature frequency. Our findings suggest that populations can adapt to their local climate with frequent exposure, with the adapting ability varying geographically due to differences in climatic and socioeconomic characteristics.
- Temporal variations in the short-term effects of ambient air pollution on cardiovascular and respiratory mortality: a pooled analysis of 380 urban areas over a 22-year periodPublication . Schwarz, Maximilian; Peters, Annette; Stafoggia, Massimo; de'Donato, Francesca; Sera, Francesco; Bell, Michelle L; Guo, Yuming; Honda, Yasushi; Huber, Veronika; Jaakkola, Jouni J.K.; Urban, Aleš; Vicedo-Cabrera, Ana Maria; Masselot, Pierre; Lavigne, Eric; Achilleos, Souzana; Kyselý, Jan; Samoli, Evangelia; Hashizume, Masahiro; Fook Sheng Ng, Chris; Silva, Susana; Madureira, Joana; Garland, Rebecca M.; Tobias, Aurelio; Armstrong, Ben; Schwartz, Joel; Gasparrini, Antonio; Schneider, Alexandra; Breitner, Susanne; Kan, Haidong; Osorio, Samuel; Orru, Hans; Indermitte, Ene; Maasikmets, Marek; Ryti, Niilo; Pascal, Mathilde; Katsouyanni, Klea; Analitis, Antonis; Entezari, Alireza; Mayvaneh, Fatemeh; Kim, Yoonhee; Alahmad, Barrak; Hurtado Diaz, Magali; Félix Arellano, Eunice Elizabeth; Rao, Shilpa; Diz-Lois Palomares, Alfonso; Scovronick, Noah; Acquaotta, Fiorella; Kim, Ho; Lee, Whanhee; Íñiguez, Carmen; Forsberg, Bertil; Ragettli, Martina S.; Guo, Yue Leon; Pan, Shih-Chun; Li, Shanshan; Zanobetti, AntonellaBackground: Ambient air pollution, including particulate matter (such as PM10 and PM2·5) and nitrogen dioxide (NO2), has been linked to increases in mortality. Whether populations' vulnerability to these pollutants has changed over time is unclear, and studies on this topic do not include multicountry analysis. We evaluated whether changes in exposure to air pollutants were associated with changes in mortality effect estimates over time. Methods: We extracted cause-specific mortality and air pollution data collected between 1995 and 2016 from the Multi-Country Multi-City (MCC) Collaborative Research Network database. We applied a two-stage approach to analyse the short-term effects of NO2, PM10, and PM2·5 on cause-specific mortality using city-specific time series regression analyses and multilevel random-effects meta-analysis. We assessed changes over time using a longitudinal meta-regression with time as a linear fixed term and explored potential sources of heterogeneity and two-pollutant models. Findings: Over 21·6 million cardiovascular and 7·7 million respiratory deaths in 380 cities across 24 countries over the study period were included in the analysis. All three air pollutants showed decreasing concentrations over time. The pooled results suggested no significant temporal change in the effect estimates per unit exposure of PM10, PM2·5, or NO2 and mortality. However, the risk of cardiovascular mortality increased from 0·37% (95% CI -0·05 to 0·80) in 1998 to 0·85% (0·55 to 1·16) in 2012 with a 10 μg/m3 increase in PM2·5. Two-pollutant models generally showed similar results to single-pollutant models for PM fractions and indicated temporal differences for NO2. Interpretation: Although air pollution levels decreased during the study period, the effect sizes per unit increase in air pollution concentration have not changed. This observation might be due to the composition, toxicity, and sources of air pollution, as well as other factors, such as socioeconomic determinants or changes in population distribution and susceptibility.
