Publication
A biobjective feature selection algorithm for large omics datasets
| dc.contributor.author | Cavique, Luís | |
| dc.contributor.author | Mendes, Armando B. | |
| dc.contributor.author | Martiniano, Hugo F.M.C. | |
| dc.contributor.author | Correia, Luís | |
| dc.date.accessioned | 2019-03-28T15:58:23Z | |
| dc.date.available | 2019-03-28T15:58:23Z | |
| dc.date.issued | 2018-06-19 | |
| dc.description.abstract | Feature selection is one of the most important concepts in data mining when dimensionality reduction is needed. The performance measures of feature selection encompass predictive accuracy and result comprehensibility. Consistency‐based methods are a significant category of feature selection research that substantially improves the comprehensibility of the result using the parsimony principle. In this work, the biobjective version of the algorithm logical analysis of inconsistent data is applied to large volumes of data. In order to deal with hundreds of thousands of attributes, heuristic decomposition uses parallel processing to solve a set covering problem and a cross‐validation technique. The biobjective solutions contain the number of reduced features and the accuracy. The algorithm is applied to omics datasets with genome‐like characteristics of patients with rare diseases. | pt_PT |
| dc.description.sponsorship | This work used the EGI, European Grid Infrastructure, with the support of the IBERGRID, Iberian Grid Infrastructure, and INCD (Portugal); NCG‐INGRID‐PT; FCT, Grant/Award Number: UID/Multi/04046/2013 | pt_PT |
| dc.description.version | info:eu-repo/semantics/publishedVersion | pt_PT |
| dc.identifier.citation | Expert Systems. 2018;35(4):e12301.doi:10.1111/exsy.12301 | pt_PT |
| dc.identifier.doi | 10.1111/exsy.12301 | pt_PT |
| dc.identifier.issn | 0266-4720 | |
| dc.identifier.uri | http://hdl.handle.net/10400.18/6335 | |
| dc.language.iso | eng | pt_PT |
| dc.publisher | Expert Systems | pt_PT |
| dc.relation.publisherversion | https://onlinelibrary.wiley.com/doi/full/10.1111/exsy.12301 | pt_PT |
| dc.subject | Biobjective Optimization | pt_PT |
| dc.subject | Feature Selection | pt_PT |
| dc.subject | Heuristic Decomposition | pt_PT |
| dc.subject | Logical Analysis of Data | pt_PT |
| dc.subject | Rare Diseases. | pt_PT |
| dc.title | A biobjective feature selection algorithm for large omics datasets | pt_PT |
| dc.type | journal article | |
| dspace.entity.type | Publication | |
| oaire.awardURI | info:eu-repo/grantAgreement/FCT/5876/UID%2FMulti%2F04046%2F2013/PT | |
| oaire.citation.issue | 4 | pt_PT |
| oaire.citation.startPage | e12301 | pt_PT |
| oaire.citation.title | Expert Systems | pt_PT |
| oaire.citation.volume | 35 | pt_PT |
| oaire.fundingStream | 5876 | |
| project.funder.identifier | http://doi.org/10.13039/501100001871 | |
| project.funder.name | Fundação para a Ciência e a Tecnologia | |
| rcaap.embargofct | Política editorial da revista | pt_PT |
| rcaap.rights | embargoedAccess | pt_PT |
| rcaap.type | article | pt_PT |
| relation.isProjectOfPublication | dc84f768-e6f2-4eea-b294-6c8ebbd1a156 | |
| relation.isProjectOfPublication.latestForDiscovery | dc84f768-e6f2-4eea-b294-6c8ebbd1a156 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 27_Cavique_et_al-2018-Expert_Systems.pdf
- Size:
- 332.87 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
