Repository logo
 
Publication

A biobjective feature selection algorithm for large omics datasets

dc.contributor.authorCavique, Luís
dc.contributor.authorMendes, Armando B.
dc.contributor.authorMartiniano, Hugo F.M.C.
dc.contributor.authorCorreia, Luís
dc.date.accessioned2019-03-28T15:58:23Z
dc.date.available2019-03-28T15:58:23Z
dc.date.issued2018-06-19
dc.description.abstractFeature selection is one of the most important concepts in data mining when dimensionality reduction is needed. The performance measures of feature selection encompass predictive accuracy and result comprehensibility. Consistency‐based methods are a significant category of feature selection research that substantially improves the comprehensibility of the result using the parsimony principle. In this work, the biobjective version of the algorithm logical analysis of inconsistent data is applied to large volumes of data. In order to deal with hundreds of thousands of attributes, heuristic decomposition uses parallel processing to solve a set covering problem and a cross‐validation technique. The biobjective solutions contain the number of reduced features and the accuracy. The algorithm is applied to omics datasets with genome‐like characteristics of patients with rare diseases.pt_PT
dc.description.sponsorshipThis work used the EGI, European Grid Infrastructure, with the support of the IBERGRID, Iberian Grid Infrastructure, and INCD (Portugal); NCG‐INGRID‐PT; FCT, Grant/Award Number: UID/Multi/04046/2013pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationExpert Systems. 2018;35(4):e12301.doi:10.1111/exsy.12301pt_PT
dc.identifier.doi10.1111/exsy.12301pt_PT
dc.identifier.issn0266-4720
dc.identifier.urihttp://hdl.handle.net/10400.18/6335
dc.language.isoengpt_PT
dc.publisherExpert Systemspt_PT
dc.relation.publisherversionhttps://onlinelibrary.wiley.com/doi/full/10.1111/exsy.12301pt_PT
dc.subjectBiobjective Optimizationpt_PT
dc.subjectFeature Selectionpt_PT
dc.subjectHeuristic Decompositionpt_PT
dc.subjectLogical Analysis of Datapt_PT
dc.subjectRare Diseases.pt_PT
dc.titleA biobjective feature selection algorithm for large omics datasetspt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/5876/UID%2FMulti%2F04046%2F2013/PT
oaire.citation.issue4pt_PT
oaire.citation.startPagee12301pt_PT
oaire.citation.titleExpert Systemspt_PT
oaire.citation.volume35pt_PT
oaire.fundingStream5876
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.embargofctPolítica editorial da revistapt_PT
rcaap.rightsembargoedAccesspt_PT
rcaap.typearticlept_PT
relation.isProjectOfPublicationdc84f768-e6f2-4eea-b294-6c8ebbd1a156
relation.isProjectOfPublication.latestForDiscoverydc84f768-e6f2-4eea-b294-6c8ebbd1a156

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
27_Cavique_et_al-2018-Expert_Systems.pdf
Size:
332.87 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: