Repository logo
 
Publication

Gold nanorods induce early embryonic developmental delay and lethality in zebrafish (Danio rerio)

dc.contributor.authorMesquita, Bárbara
dc.contributor.authorLopes, Isabel
dc.contributor.authorSilva, Susana
dc.contributor.authorBessa, Maria João
dc.contributor.authorStarykevich, Maksim
dc.contributor.authorCarneiro, Jorge
dc.contributor.authorGalvão, Tiago L.P.
dc.contributor.authorFerreira, Mário G.S.
dc.contributor.authorTedim, João
dc.contributor.authorTeixeira, João Paulo
dc.contributor.authorFraga, Sónia
dc.date.accessioned2018-03-22T17:43:01Z
dc.date.available2018-03-22T17:43:01Z
dc.date.issued2017
dc.description.abstractDue to their unique electronic and optical features, gold nanoparticles (AuNP) have received a great deal of attention for application in different fields such as catalysis, electronics, and biomedicine. The large-volume manufacturing predicted for future decades and the inevitable release of these substances into the environment necessitated an assessment of potential adverse human and ecological risks due to exposure to AuNP. Accordingly, this study aimed to examine the acute and developmental toxicity attributed to a commercial suspension of Au nanorods stabilized with cetyltrimethylammonium bromide (CTAB-AuNR) using early embryonic stages of zebrafish (Danio rerio), a well-established model in ecotoxicology. Zebrafish embryos were exposed to CTAB-AuNR (0-150 µg/L) to determine for developmental assessment until 96 hr post fertilization (hpf) and lethality. Uptake of CTAB-AuNR by embryos and nanoparticles potential to induce DNA damage was also measured at 48 and 96 hpf. Analysis of the concentration-response curves with cumulative mortality at 96 hpf revealed a median lethal concentration (LC50,96h) of 110.2 μg/L. At sublethal concentrations, CTAB-AuNR suspensions were found to produce developmental abnormalities such as tail deformities, pericardial edema, decreased body length, and delayed eye, head, and tail elongation development. Further, less than 1% of the initial concentration of CTAB-AuNR present in the exposure media was internalized by zebrafish embryos prior to (48 hpf) and after hatching (96 hpf). In addition, no marked DNA damage was detected in embryos after exposure to CTAB-AuNR. Overall, CTAB-AuNR suspensions produced lethal and sublethal effects on zebrafish embryos with possible repercussions in fitness of adult stages. However, these results foresee a low risk for fish since the observed effects occurred at concentrations above the levels expected to find in the aquatic environment.pt_PT
dc.description.sponsorshipThis work was supported by FEDER funds through the program COMPETE—Programa Operacional Factores de Competitividade,” and by the Portuguese Foundation for Science and Technology (FCT), within the CESAM’s strategic program (UID/AMB/50017/2013), the research project Synchrony (PTDC/AAG-MAA/2140/2012). This research was also partially supported by FCT and the European Regional Development Fund (ERDF), in the framework of the program PT2020 and of ERA-NET SIINN through project NanoToxClass (ERA-SIINN/0001/2013). The materials characterization performed was also developed in the scope 684 B. MESQUITA ET AL. of the project CICECO—Aveiro Institute of Materials, POCI- 01-0145-FEDER-007679 (Ref. FCT UID/CTM/50011/2013), financed by national funds through the FCT/MEC and when applicable co-financed by FEDER under the PT2020 Partnership Agreement, and also the project MAGICOAT (PTDC/CTM-BIO/2170/2014).pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationJ Toxicol Environ Health A. 2017;80(13-15):672-687. doi: 10.1080/15287394.2017.1331597. Epub 2017 Jul 11.pt_PT
dc.identifier.doi10.1080/15287394.2017.1331597pt_PT
dc.identifier.issn1528-7394
dc.identifier.urihttp://hdl.handle.net/10400.18/5440
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherTaylor & Francispt_PT
dc.relation.publisherversionhttps://www.tandfonline.com/doi/full/10.1080/15287394.2017.1331597pt_PT
dc.subjectAnimalspt_PT
dc.subjectComet Assaypt_PT
dc.subjectEmbryo, Nonmammalianpt_PT
dc.subjectEmbryonic Developmentpt_PT
dc.subjectGoldpt_PT
dc.subjectMicroscopy, Electron, Transmissionpt_PT
dc.subjectNanotubespt_PT
dc.subjectZebrafishpt_PT
dc.subjectAr e Saúde Ocupacionalpt_PT
dc.titleGold nanorods induce early embryonic developmental delay and lethality in zebrafish (Danio rerio)pt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage687pt_PT
oaire.citation.issue13-15pt_PT
oaire.citation.startPage672pt_PT
oaire.citation.titleJournal of Toxicology and Environmental Health, Part A: Current Issues (pt_PT
oaire.citation.volume80pt_PT
rcaap.rightsembargoedAccesspt_PT
rcaap.typearticlept_PT

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Gold nanorods induce early.pdf
Size:
1.8 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: