Loading...
Research Project
ALICE - Associate Laboratory in Chemical Engineering
Funder
Authors
Publications
Portuguese wildland firefighters: assessing exposure and cytogenetic effects in non-fire settings during the pre-fire season
Publication . Pires, Joana; Esteves, Filipa; Slezakova, Klara; Madureira, Joana; Vaz, Josiana; Fernandes, Adília; Pereira, Maria do Carmo; Morais, Simone; Teixeira, João Paulo; Costa, Solange
IARC has recently listed occupational exposure as a firefighter carcinogenic to humans. However,
firefighter is among the least studied occupations. The goal of the present study was to assess
the level of cytogenetic damage in buccal mucosa (first-contact exposure tissue) of Portuguese
firefighters during the pre- wildland fire season, as well as, to evaluate firefighters ́ exposure to
particulate matter (PM) on fire stations as a baseline for occupational exposure characterization.
A group of 172 Portuguese wildland firefighters were enrolled in the study, relevant information
was obtained through a questionnaire. The frequency of micronucleus and other endpoints
were evaluated via buccal micronucleus cytome assay (BMCyt) along with the influence of
potential risk factors (e.g., smoking habits). Estimated inhalation doses of PM10 and PM2.5
(indoor/outdoor) were estimated for a group of 80 firefighters. No significant associations were
found between estimated inhaled doses and BMCyt endpoints. Some lifestyle/behavioural
variables were shown to significantly decrease the levels of cytogenetic endpoints, whereas
others were found to increase them. Firefighters of the Permanent Intervention Team also
shown to have significantly higher levels of BMCyt endpoints compared to other firefighters.
Fire seasons are getting longer and dangerous, and this trend will continue in a progressive
warming world. Implementing effective mitigation strategies for firefighters’ occupational
exposure is an urgent public health issue.
Impact of renovations on EDC levels and school children's health: bridging science-policy gaps by addressing scientific uncertainties
Publication . Hatem, G.; Salamova, A.; Haninnen, O.; Faria, A.M.; Costa, C.; Slezakova, K.; Teixeira, J.P.; Madureira, J.
Building renovations may yield emissions of various air chemicals that can disrupt normal
human endocrine functions. However, only a few endocrine disruptive health outcomes
(e.g., respiratory, behavioural, or learning domains) have been comprehensively addressed
among susceptible populations, particularly schoolchildren. This project investigates the
role of school building renovations on childrenís exposure to indoor Endocrine Disrupting
Chemicals (EDCs) and the associated respiratory and cognitive health risks.
Effect of individual's characteristics on volatile organic compoounds profile analysed by an electronic nose
Publication . Slezakova, Klara; Cavaleiro-Rufo, J.; Esteves, F.; Costa, D.; Pereira, M.C.; Teixeira, J.P.; Madureira, J.
Breath analysis using an electronic nose (eNose) is a technology for exhaled volatile organic compounds (VOCs) that has shown potential in the diagnosis of respiratory diseases. However, the effect of an individual’s characteristics in the exhaled VOCs profile is far from fully understood. This pilot study aimed to identify the relevant characteristics of participants that may influence the VOCs profiles by the eNose. The study population consisted of 91 volunteers (57.1% males) with an average age of 38 years, randomly recruited among nonexposed individuals to VOCs in Porto, Portugal. Exhaled breath air samples were analysed using the Cyranose® 320. Physiological (e.g. height, weight) and sociodemographic characteristics, behavioural patterns, and occupational/environmental exposures were collected through a self-administered questionnaire. Other data (e.g. type of consumed food, liquids and oral hygiene) was recorded via face-to-face interviews. Results showed that exhaled VOCs profiles are influenced by water intake prior to breath sample air collection. It is suggested that individuals should abstain from drinking water for 2.5 h before VOC analysis. This work will support other ongoing research in occupational exposure scenarios, such as forest firefighters’, to further the understanding of this under-explored scientific area, since we hypothesise that VOCs patterns will differ between persons occupationally exposed to VOCs and those unexposed.
Firefighters’ Occupational Exposure in Preparation for Wildfire Season: Addressing Biological Impact
Publication . Esteves, Filipa; Slezakova, Klara; Madureira, Joana; Vaz, Josiana; Fernandes, Adília; Morais, Simone; Pereira, Maria do Carmo; Teixeira, João Paulo; Costa, Solange
The characterization of wildland firefighters’ occupational exposure must consider different exposures, including those at the fire station. The present study aimed to characterize the occupational exposure of 172 Northern Portuguese wildland firefighters in fire stations during the pre-wildfire season of 2021. The biological impact of estimated inhaled doses of PM10 and PM2.5 (indoor/outdoor) was accessed through a buccal micronucleus cytome (BMCyt) assay in exfoliated buccal cells of a subgroup of 80 firefighters. No significant association was found between estimated inhaled doses of PM10 and PM2.5 (mean 1.73 ± 0.43 µg kg−1 and 0.53 ± 0.21 µg kg−1, respectively) and biological endpoints. However, increased frequencies of cell death parameters were found among subjects of the Permanent Intervention Teams (full-time firefighters). The intake of nutritional supplements was associated with a significant decrease in micronucleus frequencies (i.e., DNA damage or chromosome breakage). In addition, our findings showed a significantly increased frequency of cell death endpoints (i.e., nuclear fragmentation) with coffee consumption, while daily consumption of vegetables significantly decreased it (i.e., nuclear shrinkage). Our results provide data on the occupational exposure of wildland firefighters while working in fire stations during the pre-wildfire season, providing the essential baseline for further studies throughout the wildfire season.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
6817 - DCRRNI ID
Funding Award Number
LA/P/0045/2020
