Loading...
Research Project
Centro de Química Estrutural
Funder
Authors
Publications
Packaging of Fresh Poultry Meat with Innovative and Sustainable ZnO/Pectin Bionanocomposite Films—A Contribution to the Bio and Circular Economy
Publication . Przybyszewska, A.; Barbosa, C.H.; Pires, F.; Pires, J.R.A.; Rodrigues, C.; Galus, S.; Souza, V.G.L.; Alves, M M.; Santos, C.F.; Coelhoso, I.; Fernando, A.L.
The development of innovative/sustainable materials capable of enlarging the shelf-life of food products has lately been a focus of research, aiming to reduce food waste. Due to their good antimicrobial properties, zinc oxide nanoparticles (ZnO NPs) can add activity to food packaging, improving its performance. Furthermore, these nanoparticles are considered GRAS by the Food and Drug Administration (FDA), which represents an advantage in their application. Through an innovative and sustainable approach using tomato and passionfruit extracts, ZnO NPs were produced and incorporated into pectin films. The resulting bionanocomposites were tested for their activity via in situ studies, using fresh poultry meat as a food matrix. Overall, the bionanocomposites presented good antimicrobial activity, with the intrinsic antimicrobial properties of pectin having shown to be enhanced by the incorporated ZnO NPs. When used as primary packaging for the meat, the deterioration rate of the poultry meat, measured through microbiological growth and total volatile basic nitrogen content, was reduced. However, the nanoparticles contributed to the increment of discoloration and meat oxidation processes. Nonetheless, it can be concluded that fresh poultry meat protected with the bionanocomposites presented an extension of its shelf-life time, and it was confirmed that this eco-friendly packaging has potential to be employed by the food industry.
Alkyl deoxyglycoside-polymyxin combinations against critical priority carbapenem-resistant gram-negative bacteria
Publication . Matos, Ana M. de; Calado, Patrícia; Miranda, Mónica; Almeida, Rita; Rauter, Amélia P.; Oliveira, M. Conceição; Manageiro, Vera; Caniça, Manuela
The escalating antimicrobial resistance crisis urges the development of new antibacterial treatments with innovative mechanisms of action, particularly against the critical priority carbapenem-resistant Acinetobacter baumannii (CRAB), Pseudomonas aeruginosa (CRPA) and Enterobacteriaceae (CRE). Membrane-disrupting dodecyl deoxyglycosides have been reported for their interesting phosphatidylethanolamine-associated bactericidal activity against Gram-positive strains; however, their inability to penetrate the Gram-negative outer membrane (OM) renders them useless against the most challenging pathogens. Aiming to repurpose alkyl deoxyglycosides against Gram-negative bacteria, this study investigates the antimicrobial effects of five reference compounds with different deoxygenation patterns or anomeric configurations in combination with polymyxins as adjuvants for enhanced OM permeability. The generation of the lead 4,6-dideoxy scaffold was optimized through a simultaneous dideoxygenation step and applied to the synthesis of a novel alkyl 4,6-dideoxy C-glycoside 5, herein reported for the first time. When combined with subtherapeutic colistin concentrations, most glycosides demonstrated potent antimicrobial activity against several multidrug-resistant clinical isolates of CRAB, CRE and CRPA exhibiting distinct carbapenem resistance mechanisms, together with acceptable cytotoxicity against human HEK-293T and Caco-2 cells. The novel 4,6-dideoxy C-glycoside 5 emerged as the most promising prototype structure for further development (MIC 3.1 μg/mL when combined with colistin 0.5 μg/mL against CRPA or 0.25 μg/mL against several CRE and CRAB strains), highlighting the potential of C-glycosylation for an improved bioactive profile. This study is the first to show the potential of IM-targeting carbohydrate-based compounds for the treatment of infections caused by MDR Gram-negative pathogens of clinical importance.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
6817 - DCRRNI ID
Funding Award Number
UIDB/00100/2020
