Repository logo
 
Loading...
Project Logo
Research Project

Carboxydotrophs for alkane production: from CO/CO2 to fuel

Authors

Publications

Mass Spectrometry-Based Proteomic and Metabolomic Profiling of Serum Samples for Discovery and Validation of Tuberculosis Diagnostic Biomarker Signature
Publication . Fernandes, Ana Filipa; Gonçalves, Luís Gafeira; Bento, Maria; Anjo, Sandra I.; Manadas, Bruno; Barroso, Clara; Villar, Miguel; Macedo, Rita; Simões, Maria João; Coelho, Ana Varela
Tuberculosis (TB) is a transmissible disease listed as one of the 10 leading causes of death worldwide (10 million infected in 2019). A swift and precise diagnosis is essential to forestall its transmission, for which the discovery of effective diagnostic biomarkers is crucial. In this study, we aimed to discover molecular biomarkers for the early diagnosis of tuberculosis. Two independent cohorts comprising 29 and 34 subjects were assayed by proteomics, and 49 were included for metabolomic analysis. All subjects were arranged into three experimental groups-healthy controls (controls), latent TB infection (LTBI), and TB patients. LC-MS/MS blood serum protein and metabolite levels were submitted to univariate, multivariate, and ROC analysis. From the 149 proteins quantified in the discovery set, 25 were found to be differentially abundant between controls and TB patients. The AUC, specificity, and sensitivity, determined by ROC statistical analysis of the model composed of four of these proteins considering both proteomic sets, were 0.96, 93%, and 91%, respectively. The five metabolites (9-methyluric acid, indole-3-lactic acid, trans-3-indoleacrylic acid, hexanoylglycine, and N-acetyl-L-leucine) that better discriminate the control and TB patient groups (VIP > 1.75) from a total of 92 metabolites quantified in both ionization modes were submitted to ROC analysis. An AUC = 1 was determined, with all samples being correctly assigned to the respective experimental group. An integrated ROC analysis enrolling one protein and four metabolites was also performed for the common control and TB patients in the proteomic and metabolomic groups. This combined signature correctly assigned the 12 controls and 12 patients used only for prediction (AUC = 1, specificity = 100%, and sensitivity = 100%). This multiomics approach revealed a biomarker signature for tuberculosis diagnosis that could be potentially used for developing a point-of-care diagnosis clinical test.
Lactate-coated polyurea-siRNA dendriplex: a gene therapy-directed and metabolism-based strategy to impair glioblastoma (GBM)
Publication . Martins, Filipa; Arada, Renata; Barros, Hélio; Matos, Paulo; Ramalho, José; Ceña, Valentín; Bonifácio, Vasco D.B.; Gonçalves, Luís G.; Serpa, Jacinta
Glioblastoma (GBM) is a highly lethal disease with limited treatment options due to its infiltrative nature and the lack of efficient therapy able to cross the protective blood-brain barrier (BBB). GBMs are metabolically characterized by increased glycolysis and glutamine dependence. This study explores a novel metabolism-based therapeutic approach using a polyurea generation 4 dendrimer (PURE) surface functionalized with lactate (LA) (PURE-LA), to take advantage of glucose-dependent monocarboxylate transporters (MCTs) overexpression, loaded with selenium-chrysin (SeChry) and temozolomide (TMZ) or complexed with anti-glutaminase (GLS1) siRNAs to abrogate glutamine dependence. The nanoparticles (PURE-LA) were efficient vehicles for cytotoxic compounds delivery, since SeChry@PURE-LA and TMZ@PURE-LA induced significant cell death in GBM cell lines, particularly in U251, which exhibits higher MCT1 expression. The anti-GLS1 siRNA-dendriplex with PURE-LA (PURE-LA-anti-GLS1-siRNA) knocked down GLS1 in the GBM cell lines. In two in vitro BBB models, these dendriplexes successfully crossed the BBB, decreased GLS1 expression and altered the exometabolome of GBM cell lines, concomitantly with autophagy activation. Our findings highlight the potential of targeting glucose and glutamine pathways in GBM using dendrimer-based nanocarriers, overcoming the BBB and disrupting key metabolic processes in GBM cells. PURE-LA-anti-GLS1-siRNA dendriplexes cross the blood-brain barrier (BBB) and impair glioblastoma (GBM) metabolism. The BBB is formed by a thin monolayer of specialized brain microvascular endothelial cells joined together by tight junctions that selectively control the passage of substances from the blood to the brain. It is a major obstacle in the treatment of GBM, since many chemotherapeutic drugs are unable to penetrate the brain. Therefore, we developed a strategy to overcome this obstacle: a lactate-coated polyurea dendrimer generation 4 (PURE) able to cross the BBB in vitro, that act as a nanocarrier of drugs and siRNA to the GBM cells. PURE-LA are nanoparticles functionalized with lactate (LA) to target MCT1, a lactate transporter highly expressed by GBM cells. Moreover, a complex of this nanoparticle with anti-GLS1 (glutaminase) siRNA (PURE-LA-anti-GLS1-siRNA) was made, to target glutamine metabolism. It efficiently knocked down GLS1. Moreover, PURE-LA loaded with SeChry led to BBB disruption.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

Funding Award Number

SFRH/BPD/111100/2015

ID