Browsing by Author "da Silva, Maria Gomes"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Three-way translocation (X;20;16)(p11;q13;q23) in essential thrombocythemia implicates NFATC2 in dysregulation of CSF2 expression and megakaryocyte proliferationPublication . Vieira, Luís; Vaz, Andreia; Matos, Paulo; Ambrósio, Ana Paula; Nogueira, Manel; Marques, Bárbara; Pereira, AM; Jordan, Peter; da Silva, Maria GomesEssential thrombocythemia (ET) is a myeloproliferative neoplasm essentially characterized by excessive production of platelets. Molecular pathogenesis of ET is linked in approximately half of the patients to intracellular cytokine signaling dysregulation as a result of thrombopoietin receptor or Janus kinase 2 (JAK2) mutations. However, genetic defects underlying cytokine transcription have not been associated with ET. Using molecular cytogenetics and whole-genome array analyses, we uncovered a submicroscopic deletion at 20q13.2 in a JAK2V617F-positive ET patient with an acquired complex chromosome translocation. The deletion encompassed the nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 2 (NFATC2) gene that encodes a transcription factor involved in the regulation of hematopoietic cytokines. RNA interference-mediated suppression of NFATC2 mRNA or pharmacological inhibition of NFATC2 protein with 11R-VIVIT in cultured JAK2V617F-positive SET-2 megakaryocytes increased colony stimulating factor 2 (granulocyte-macrophage) (CSF2) mRNA and promoted cell proliferation. Moreover, impairment of NFATC2-calcineurin interaction with 11R-VIVIT further reduced the transcription of the NFATC2 gene. Antibody-mediated neutralization of CSF2 cytokine in inhibitor-treated cells prevented 11R-VIVIT-induced cell proliferation, indicating that impairment of NFATC2-calcineurin interaction promotes megakaryocyte proliferation through up-regulation of CSF2 transcription. Our results suggest a model in which haplo-insufficiency of NFATC2 cooperates with activation of the JAK-STAT signaling pathway in the pathogenesis of JAK2V617F-positive ET with del(20q). These results further indicate that pathogenesis of ET may be linked to genetic defects of other transcription factor genes involved in the regulation of cytokine expression.
