Browsing by Author "Weiskerger, Chelsea J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Contaminants in water and sand: a new frontier for quantitative microbial risk assessmentPublication . Weiskerger, Chelsea J.; Brandão, JoãoWater sports and recreation can lead to exposure to microbial pathogens, including opportunists. At the beach, the Guidelines for Safe Recreational Water Environments, by the World Health Organization, are currently the leading public health and safety regulatory recommendations. As policy-makers begin to revisit the guidelines for safe recreational water environments and subsequent legislation, consideration of evidence gathered by a global community of varied professional fields is recommended. Quantitative microbial risk assessment is a recent approach that estimates the risk of exposure to pathogens in recreational water from dose-response relationships and observed pathogen concentrations. This can be powerful in informing public health policy in recreational areas. However, some microorganisms, namely fungi, do not yet have established median infectious doses, despite their known ability to impact human health at beaches. Can we calculate the risk of fungal exposure? Not yet, but we should work toward this goal.
- Impacts of a changing earth on microbial dynamics and human health risks in the continuum between beach water and sandPublication . Weiskerger, Chelsea J.; Brandão, João; Ahmed, Warish; Aslan, Asli; Avolio, Lindsay; Badgley, Brian D.; Boehm, Alexandria B.; Edge, Thomas A.; Fleisher, Jay M.; Heaney, Christopher D.; Jordao, Luisa; Kinzelman, Julie L.; Klaus, James S.; Kleinheinz, Gregory T.; Meriläinen, Päivi; Nshimyimana, Jean Pierre; Phanikumar, Mantha S.; Piggot, Alan M.; Pitkänen, Tarja; Robinson, Clare; Sadowsky, Michael J.; Staley, Christopher; Staley, Zachery R.; Symonds, Erin M.; Vogel, Laura J.; Yamahara, Kevan M.; Whitman, Richard L.; Solo-Gabriele, Helena M.; Harwood, Valerie J.Although infectious disease risk from recreational exposure to waterborne pathogens has been an active area of research for decades, beach sand is a relatively unexplored habitat for the persistence of pathogens and fecal indicator bacteria (FIB). Beach sand, biofilms, and water all present unique advantages and challenges to pathogen introduction, growth, and persistence. These dynamics are further complicated by continuous exchange between sand and water habitats. Models of FIB and pathogen fate and transport at beaches can help predict the risk of infectious disease from beach use, but knowledge gaps with respect to decay and growth rates of pathogens in beach habitats impede robust modeling. Climatic variability adds further complexity to predictive modeling because extreme weather events, warming water, and sea level change may increase human exposure to waterborne pathogens and alter relationships between FIB and pathogens. In addition, population growth and urbanization will exacerbate contamination events and increase the potential for human exposure. The cumulative effects of anthropogenic changes will alter microbial population dynamics in beach habitats and the assumptions and relationships used in quantitative microbial risk assessment (QMRA) and process-based models. Here, we review our current understanding of microbial populations and transport dynamics across the sand-water continuum at beaches, how these dynamics can be modeled, and how global change factors (e.g., climate and land use) should be integrated into more accurate beachscape-based models.
