Browsing by Author "Vazquez, Julio A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Genetic Meningococcal Antigen Typing System (gMATS): A genotyping tool that predicts 4CMenB strain coverage worldwidePublication . Muzzi, Alessandro; Brozzi, Alessandro; Serino, Laura; Bodini, Margherita; Abad, Raquel; Caugant, Dominique; Comanducci, Maurizio; Lemos, Ana Paula; Gorla, Maria Cecilia; Křížová, Pavla; Mikula, Claudia; Mulhall, Robert; Nissen, Michael; Nohynek, Hanna; Simões, Maria João; Skoczyńska, Anna; Stefanelli, Paola; Taha, Muhamed-Kheir; Toropainen, Maija; Tzanakaki, Georgina; Vadivelu-Pechai, Kumaran; Watson, Philip; Vazquez, Julio A.; Rajam, Gowrisankar; Rappuoli, Rino; Borrow, Ray; Medini, DuccioBackground: The Meningococcal Antigen Typing System (MATS) was developed to identify meningococcus group B strains with a high likelihood of being covered by the 4CMenB vaccine, but is limited by the requirement for viable isolates from culture-confirmed cases. We examined if antigen genotyping could complement MATS in predicting strain coverage by the 4CMenB vaccine. Methods: From a panel of 3912 MATS-typed invasive meningococcal disease isolates collected in England and Wales in 2007-2008, 2014-2015 and 2015-2016, and in 16 other countries in 2000-2015, 3481 isolates were also characterized by antigen genotyping. Individual associations between antigen genotypes and MATS coverage for each 4CMenB component were used to define a genetic MATS (gMATS). gMATS estimates were compared with England and Wales human complement serum bactericidal assay (hSBA) data and vaccine effectiveness (VE) data from England. Results: Overall, 81% of the strain panel had genetically predictable MATS coverage, with 92% accuracy and highly concordant results across national panels (Lin's accuracy coefficient, 0.98; root-mean-square deviation, 6%). England and Wales strain coverage estimates were 72-73% by genotyping (66-73% by MATS), underestimating hSBA values after four vaccine doses (88%) and VE after two doses (83%). The gMATS predicted strain coverage in other countries was 58-88%. Conclusions: gMATS can replace MATS in predicting 4CMenB strain coverage in four out of five cases, without requiring a cultivable isolate, and is open to further improvement. Both methods underestimated VE in England. Strain coverage predictions in other countries matched or exceeded England and Wales estimates.
- Implications of differential age distribution of disease-associated meningococcal lineages for vaccine developmentPublication . Brehony, Carina; Trotter, Caroline L.; Ramsay, Mary E.; Jolley, Keith A.; van der Ende, Arie; Carion, Françoise; Berthelsen, Lene; Hoffmann, Steen; Harðardóttir, Hjördís; Vazquez, Julio A.; Murphy, Karen; Toropainen, Maija; Caniça, Manuela; Ferreira, Eugenia; Diggle, Mathew; Edwards, Giles F; Taha, Muhamed-Kheir; Stefanelli, Paola; Kriz, Paula; Gray, Steve J.; Fox, Andrew J.; Jacobsson, Susanne; Claus, Heike; Vogel, Ulrich; Tzanakaki, Georgina; Heuberger, Sigrid; Caugant, Dominique A.; Frosch, Matthias; Maiden, Martin C. J.New vaccines targeting meningococci expressing serogroup B polysaccharide have been developed, with some being licensed in Europe. Coverage depends on the distribution of disease-associated genotypes, which may vary by age. It is well established that a small number of hyperinvasive lineages account for most disease, and these lineages are associated with particular antigens, including vaccine candidates. A collection of 4,048 representative meningococcal disease isolates from 18 European countries, collected over a 3-year period, were characterized by multilocus sequence typing (MLST). Age data were available for 3,147 isolates. The proportions of hyperinvasive lineages, identified as particular clonal complexes (ccs) by MLST, differed among age groups. Subjects <1 year of age experienced lower risk of sequence type 11 (ST-11) cc, ST-32 cc, and ST-269 cc disease and higher risk of disease due to unassigned STs, 1- to 4-year-olds experienced lower risk of ST-11 cc and ST-32 cc disease, 5- to 14-year-olds were less likely to experience ST-11 cc and ST-269 cc disease, and ≥25-year-olds were more likely to experience disease due to less common ccs and unassigned STs. Younger and older subjects were vulnerable to a more diverse set of genotypes, indicating the more clonal nature of genotypes affecting adolescents and young adults. Knowledge of temporal and spatial diversity and the dynamics of meningococcal populations is essential for disease control by vaccines, as coverage is lineage specific. The nonrandom age distribution of hyperinvasive lineages has consequences for the design and implementation of vaccines, as different variants, or perhaps targets, may be required for different age groups.
