Browsing by Author "Sollner Dolenc, Marija"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Hazard identification and characterization of leachable chemicals from plastic products – a new PARC projectPublication . Dirven, Hubert; Bogusz, Aleksandra; Hans Bouwmeester; Busch, Mathias; Duflos, Guillaume; Eriksen, Gunnar S.; Fardilha, Margarida; Flores-Gomez, Daniela; Franko, Nina; Gaté, Laurent; Guichard, Yves; Silva, Maria Joao; Kamstra, Jorke H.; Kasiotis, Konstantinos M.; Kim, Sunmi; Kim, Young Jun; Kim, Youngsam; van der Koogh, Elise; Loureiro, Susana; Louro, Henriqueta; Machera, Kyriaki; Pieters, Raymond H. H.; Spyropoulou, Anastasia; Tzanetou, Evangelia N.; Malheiro, Catarina; Ravnjak, Tim; Repetto, Guillermo; Rivière, Gilles; Ryu, Chang Seon; Papadopoulou, Evgenia Anna; Aliferis, Konstantinos A.; Solhaug, Anita; Sollner Dolenc, Marija; Štampar, Martina; Tavares, Ana M.; Tollefsen, Knut Erik; Ventura, Célia; Walkowiak, Radoslaw; Zobl, Walter; Žegura, Bojana; Snapkow, Igor; Herzke, DorteA recent study has suggested that plastics may contain more than 16,000 chemicals, including additives, processing aids, starting substances, intermediates and Non-Intentionally Added Substances. Plastic chemicals are released throughout the plastic life cycle, from production, use, disposal and recycling. Most of these chemicals have not been studied for potential hazardous properties for humans and in the environment. To refine the risk assessment of these leachable chemicals, additional hazard data are needed. The PlasticLeach project within the EU co-funded Partnership for the Assessment of Risks from Chemicals (PARC) aims to address this data gap by screening several plastic products in daily use. Leachates will be prepared from a number of these plastic items, and these chemical mixtures will be further tested using several test guideline compliant assays and New Approach Methodologies covering both human health and environmental endpoints. The most toxic leachates will be characterized using a non-targeted analysis pipeline to identify chemicals in the leachate. When single chemicals of concern are identified, these will be further tested to determine hazardous properties and identify the respective potency factors to better understand their specific hazard profiles. A tiered approach for hazard testing will be followed. The experimental work will be complemented by toxicological profiling, using publicly available toxicity databases and tools, including Artificial Intelligence tools that cover both human and environmental endpoints. A comprehensive array of endpoints, including cytotoxicity, endocrine disruption, genotoxicity, immunotoxicity, reproductive toxicity and effects related to ecotoxicity will be evaluated. In this paper, we outline the plastic products to be tested and the battery of assays that will be used to identify hazards relevant to both human health and the environment. Data generated from approaches will be reported using standardized formats, stored within a centralized repository, and harmonized to adhere to the FAIR data principles (Findable, Accessible, Interoperable, and Reusable). This integrated strategy will not only advance our understanding of the risks associated with plastic-derived chemicals but will also provide critical support for regulatory decision-making and facilitate the development of safer, and more ecofriendly plastic materials in the future.
- New approach methodologies to enhance human health risk assessment of immunotoxic properties of chemicals - a PARC (Partnership for the Assessment of Risk from Chemicals) projectPublication . Snapkow, Igor; Smith, Nicola M.; Arnesdotter, Emma; Beekmann, Karsten; Blanc, Etienne B.; Braeuning, Albert; Corsini, Emanuela; Sollner Dolenc, Marija; Duivenvoorde, Loes P.M.; Sundstøl Eriksen, Gunnar; Franko, Nina; Galbiati, Valentina; Gostner, Johanna M.; Grova, Nathalie; Gutleb, Arno C.; Hargitai, Rita; Janssen, Aafke W.F.; Krapf, Solveig A.; Lindeman, Birgitte; Lumniczky, Katalin; Maddalon, Ambra; Mollerup, Steen; Parráková, Lucia; Pierzchalski, Arkadiusz; Pieters, Raymond H.H.; Silva, Maria Joao; Solhaug, Anita; Staal, Yvonne C.M.; Straumfors, Anne; Szatmári, Tünde; Turner, Jonathan D.; Vandebriel, Rob J.; Zenclussen, Ana Claudia; Barouki, RobertAs a complex system governing and interconnecting numerous functions within the human body, the immune system is unsurprisingly susceptible to the impact of toxic chemicals. Toxicants can influence the immune system through a multitude of mechanisms, resulting in immunosuppression, hypersensitivity, increased risk of autoimmune diseases and cancer development. At present, the regulatory assessment of the immunotoxicity of chemicals relies heavily on rodent models and a limited number of Organisation for Economic Co-operation and Development (OECD) test guidelines, which only capture a fraction of potential toxic properties. Due to this limitation, various authorities, including the World Health Organization and the European Food Safety Authority have highlighted the need for the development of novel approaches without the use of animals for immunotoxicity testing of chemicals. In this paper, we present a concise overview of ongoing efforts dedicated to developing and standardizing methodologies for a comprehensive characterization of the immunotoxic effects of chemicals, which are performed under the EU-funded Partnership for the Assessment of Risk from Chemicals (PARC).
